[Instruction]

<u>Contents</u>

Chapter 1: PLC Ladder Diagram and the Coding Rules of Mnemonic

1.1	The Operation Principle of Ladder Diagram	1-1
1.1	I.1 Combination Logic ·····	1-1
1.1	I.2 Sequential Logic ·····	1-2
1.2	Differences Between the Conventional and PLC Ladder Diagram	1-3
1.3	Ladder Diagram Structure and Terminology	1-5
1.4	The Coding Rules of Mnemonic	1-8
1.5 -	The De-Composition of a Network	1-11
1.6	Using Temporary Relays	1-12
1.7	Program Simplification Techniques	1-13

Chapter 2: FBS-PLC Memory Allocation

2.1	FBs-PLC Memory Allocation ·····	2-1
2.2	Digital and Register Allocations	2-2
2.3	Special Relay Details	2-3
2.4	Special Registers Details	2-8

Chapter 3: FBS-PLC Instruction Lists

3.1	Sequential Instructions	3-1
3.2	Function Instructions	3-2

Chapter 4: Sequential Instructions

4.1 V	alid range of the Operand of Sequential Instructions	-1
4.2 E	lement Description 4-	-2
4.2.1	Characteristics of A, B, TU and TD Contacts 4-	-2
4.2.2	OPEN and SHORT Contact4-	-3
4.2.3	Output Coil and Inverse Output Coil ······ 4-	-4
4.2.4	Retentive Output Coil ······ 4-	-4
4.2.5	Set Coil and Reset Coil	-5
4.3 N	ode Operation Instructions4-	-5

Chapter 5: Description of Function Instructions

5.1	5.1 The Format of Function Instructions 5-1			
5.1	1.1	Input Control	5-1	
5.1	1.2	Instruction Number and Derivative Instructions	5-2	
5.1	1.3	Operand	5-3	
5.1	1.4	Functions Output (FO)	5-6	
5.2	Us	se Index Register(XR) for Indirect Addressing	5-6	
5.3	Νι	umbering System	5-9	
5.3	3.1	Binary Code and Relative Terminologies	5-9	
5.3	3.2	The Coding of Numeric Numbers for FBs-PLC	5-10	
5.3	3.3	Range of Numeric Value	5-10	
5.3	3.4	Representation of Numeric Value	5-10	
5.3	3.5	Representation of Negative Number	5-11	
5.3	3.6	Representation of Floating Point Number	5-11	
5.4	O	verflow and Underflow of Increment(+1) or Decrement(-1)	5-12	
5.5	Са	arry and Borrow in Addition/Subtraction	5-13	

Chapter 6: Basic Function Instructions

•	Т	(Timer)	6-2
•	С	(Counter)	6-5
•	Set	(SET)	6-8
•	Reset	(RESET)	6-10
•	Master control loop start	(FUN0)	6-12
•	Master control loop end	(FUN01)	6-14
•	Skip start	(FUN02)	6-15
•	Skip end	(FUN03)	6-17
•	Differential up	(FUN04)	6-18
•	Differential down	(FUN05)	6-19
•	Bit shift	(FUN06)	6-20
•	Up/down counter	(FUN07)	6-21
•	Move	(FUN08)	6-23
•	Move inverse	(FUN09)	6-24
•	Toggle switch	(FUN10)	6-25
•	Addition	(FUN11)	6-26
•	Subtraction	(FUN12)	6-27

•	Multiplication	(FUN13)	6-28
•	Division	(FUN14)	6-30
•	Increment	(FUN15)	6-32
•	Decrement	(FUN16)	6-33
•	Compare	(FUN17)	6-34
•	Logical and	(FUN18)	6-35
•	Logical or	(FUN19)	6-36
•	Binary to bcd conversion	(FUN20)	6-37
•	Bcd to binary conversion	(FUN21)	6-38

Chapter 7: Advanced Function Instructions

•	Flow control instructions1	(FUN22)
•	Arithmetical operation instructions	(FUN23~32)7-2~7-9
•	Logical operation instructions	(FUN35~36)7-10~7-13
•	Comparison instruction	(FUN37)7-14
•	Data movement instructions1	(FUN40~50)7-15~7-25
•	Shifting / Rotating instructions	(FUN51~54)7-26~7-29
•	Code conversion instructions	(FUN55~64)7-30~7-46
•	Flow control instructions2	(FUN65~71)7-47~7-54
•	I/O instructions	(FUN74~86)7-55~7-72
•	Cumulative timer instructions	(FUN87~89)7-73~7-74
•	Watchdog timer instructions	(FUN90~91)7-75~7-76
•	High speed counting ∕ timing	(FUN92~93)7-77~7-78
•	Report printing instructions	(FUN94)7-79~7-80
•	Slow up / Slow down instructions	(FUN95)7-81~7-82
•	Table instructions	(FUN100~114)7-84~7-101
•	Matrix instructions	(FUN120~130)7-103~7-113
•	NC positioning instructions	(FUN139~143)7-114~7-119
•	Enable / Disable instructions	(FUN145~146)7-120~7-121
•	Communication instructions	(FUN150~151)7-122~7-123
•	Data movement instructions2	(FUN160)7-124~7-125
•	Floating Arithmetical operation instruc	tions(FUN200~213)7-126~7-140

Chapter 8: Step Instruction Description

8.1	The Operation Principle of Step Ladder Diagram	8-1
8.2	Basic Formation of Step Ladder Diagram	8-2
8.3	Instruction of Step Introduction: STP, FROM, TO, and STPEND	8-5

8.4	Notes for Writing a Step Ladder Diagram ·····	8-11
8.5	Application Examples	8-15
8.6	Syntax Check Error Codes for Step Instruction	8-22

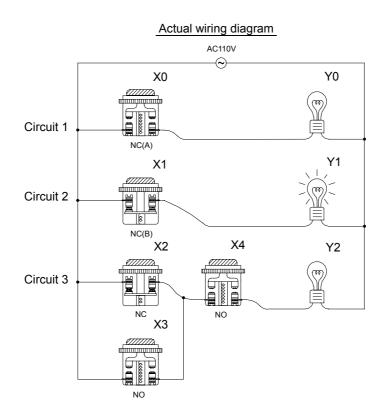
(Appendix) DAP Simple Human Machine Interface

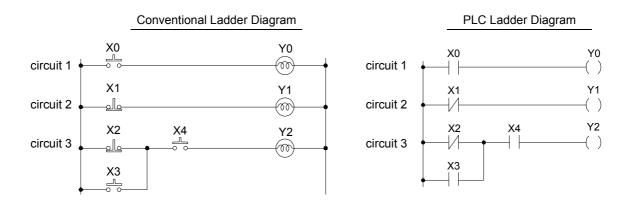
1.1	Pro	Profile		
1.2	Imp	portant points before operation	-2	
1.3	The	e Main Functions of FBs-DAP	3	
1.4	Set	ter Functions of General Information	3	
1.5	FU	N Functions	5	
1.5	.1	In and out of FUN functions	5	
1.5	.2	FUN function description	6	
1.6	Wir	eless card reading functions	9	
1.7	Spe	ecial message display function	11	
1.7	.1	Message display application	11	
1.7	.2	The Information formats of messages (ASCII Table)	12	

[Instruction]

Chapter 1 PLC Ladder Diagram and the Coding Rules of Mnemonic

In this chapter, we would like to introduce you the basic principles of ladder diagram, in addition, the coding rules of mnemonic will be introduced as well, it's essential for the user who use FP-07C as a programming tool. If you are familiar with PLC Ladder Diagram and mnemonic coding rules, you may skip this chapter.


1.1 The Operation Principle of Ladder Diagram

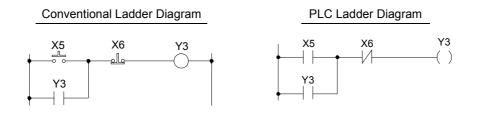

Ladder Diagram is a type of graphic language for automatic control systems it had been used for a long period since World War II. Until today, it is the oldest and most popular language for automatic control systems. Originally there are only few basic elements available such as A-contact (Normally ON), B contact (Normally OFF), output Coil, Timers and Counters. Not until the appearance of microprocessor based PLC, more elements for Ladder Diagram, such as differential contact, retentive coil (refer to page 1-6) and other instructions that a conventional system cannot provide, became available.

The basic operation principle for both conventional and PLC Ladder Diagram is the same. The main difference between the two systems is that the appearance of the symbols for conventional Ladder Diagram are more closer to the real devices, while for PLC system, symbols are simplified for computer display. There are two types of logic system available for Ladder Diagram logic, namely combination logic and sequential logic. Detailed explanations for these two logics are discussed below.

1.1.1 Combination Logic

Combination logic of the Ladder Diagram is a circuit that combines one or more input elements in series or parallel and then send the results to the output elements, such as Coils, Timers/Counters, and other application instructions.

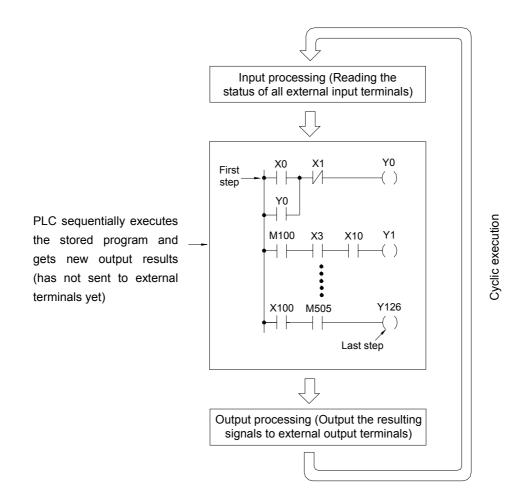
The above example illustrated the combination logic using the actual wiring diagram, conventional Ladder Diagram, and PLC Ladder Diagram. Circuit 1 uses a NO (Normally Open) switch that is also called "A" switch or contact. Under normal condition (switch is not pressed), the switch contact is at OFF state and the light is off. If the switch is pressed, the contact status turns ON and the light is on. In contrast, circuit 2 uses a NC (Normally Close) switch that is also called "B" switch or contact. Under normal condition, the switch contact is at ON state and the light is on. If the switch is pressed, the contact status turns OFF and the light also turns off.


Circuit 3 contains more than one input element. Output Y2 light will turn on under the condition when X2 is closed or X3 switches to ON, and X4 must switch ON too.

1.1.2 Sequential Logic

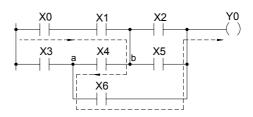
The sequential logic is a circuit with feedback control; that is, the output of the circuit will be feedback as an input to the same circuit. The output result remains in the same state even if the input condition changes to the original position. This process can be best explained by the ON/OFF circuit of a latched motor driver as shown in below.

Actual wiring diagram

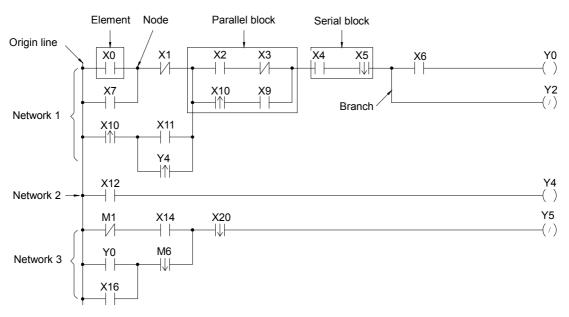

When we first connect this circuit to the power source, X6 switch is ON but X5 switch is OFF, therefore the relay Y3 is OFF. The relay output contacts 1 and 2 are OFF because they belong to A contact (ON when relay is ON). Motor does not run. If we press down the switch X5, the relay turns ON as well as contacts 1 and 2 are ON and the Motor starts. Once the relay turns ON, if we release the X5 switch (turns OFF), relay can retain its state with the feedback support from contact 1 and it is called Latch Circuit. The following table shows the switching process of the example we have discussed above.

	X5 switch (NO)	X6 switch (NC)	Motor (Relay) status
1	Released	Released	OFF
↓ ②	Pressed	Released	ON
↓ ③	Released	Released	ON
↓ ④	Released	Pressed	OFF
↓ ⑤	Released	Released	OFF

From the above table we can see that under different stages of sequence, the results can be different even the input statuses are the same. For example, let's take a look at stage ① and stage ③ , X5 and X6 switches are both released, but the Motor is ON (running) at stage ③ and is OFF (stopped) at stage ① . This sequential control with the feedback of the output to the input is a unique characteristic of Ladder Diagram circuit. Sometimes we call the Ladder Diagram a "Sequential Control Circuit" and the PLC a "Sequencer". In this section, we only use the A/B contacts and output coils as the example. For more details on sequential instructions please refer to chapter 5 - "Introduction to Sequential Instructions."


1.2 Differences Between Conventional and PLC Ladder Diagram

Although the basic operation principle for both conventional and PLC Ladder Diagram are the same, but in reality, PLC uses the CPU to emulate the conventional Ladder Diagram operations; that is, PLC uses scanning method to monitor the statuses of input elements and output coils, then uses the Ladder Diagram program to emulate the results which are the same as the results produced by the conventional Ladder Diagram logic operations. There is only one CPU, so the PLC has to sequentially examine and execute the program from its first step to the last step, then returns to the first step again and repeats the operation (cyclic execution). The duration of a single cycle of this operation is called the scan time. The scan time varies with the program size. If the scan time is too long, then input and output delay will occur. Longer delay time may cause big problems in controlling fast response systems. At this time, PLCs with short scan time are required. Therefore, scan time is an important specification for PLCs. Due to the advance in microcomputer and ASIC technologies nowadays the scan speed has been enhanced a great deal. A typical FB_E-PLC takes approximately 0.33 ms for IK steps of contact. The following diagram illustrates the scanning process of a PLC Ladder Diagram.



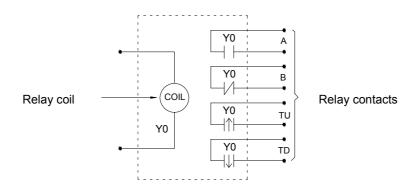
Besides the time scan difference mentioned above, the other difference between the conventional and PLC Ladder Diagram is "Reverse flow" characteristic. As shown in the diagram below, if X0, X1, X4 and X6 are ON, and the remaining elements are OFF. In a conventional Ladder Diagram circuit, a reverse flow route for output Y0 can be defined by the dashed line and Y0 will be ON. While for PLC, Y0 is OFF because the PLC Ladder Diagram scans from left to right, if X3 is off then CPU believes node "a" is OFF, although X4 and node "b" are all ON, since the PLC scan reaches X3 first. In other words, the PLC ladder can only allow left to right signal flow while conventional ladder can flow bi-directional.

Reverse flow of conventional Ladder diagram

1.3 Ladder Diagram Structure and Terminology

Sample Ladder Diagram

(Remark : The maximum size of FBs-PLC network is 16 rows × 22 columns)

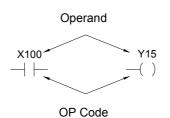

As shown above, the Ladder Diagram can be divided into many small cells. There are total 88 cells (8 rows X 11 columns) for this example Ladder Diagram. One cell can accommodate one element. A completed Ladder Diagram can be formed by connecting all the cells together according to the specific requirements. The terminologies related to Ladder Diagram are illustrated below.

① Contact

Contact is an element with open or short status. One kind of contact is called "Input contact" (reference number prefix with X) and its status reference from the external signals (the input signal comes from the input terminal block). Another one is called "Relay contact" and its status reflects the status of relay coil (please refer to ②). The relation between the reference number and the contact status depends on the contact type. The contact elements provided by FB series PLC include: A contact, B contact, up/down differential (TU/TD) contacts and Open/Short contacts. Please refer to ④ for more details.

2 Relay

Same as the conventional relay, it consists of a Coil and a Contact as shown in the diagram below.



We must energize the coil of relay first (using OUT instruction) in order to turn on the relay. After the coil is energized, its contact status will be ON too. As shown in the example above, if Y0 turns ON, then the relay contact A is ON and contact B is OFF, TU contact only turns ON for one scan duration and TD contact is OFF. If Y0 turns OFF, then the relay contact A is ON and contact B is ON, TU contact is OFF and TD contact only turns ON for one scan duration (Please refer to chapter 5 "Introduction to Sequential Instructions" for operations of A,B,TU and TD contacts).

There are four types of FB-PLC relays, namely Y $\triangle \triangle$ (output relay), M $\triangle \triangle \triangle$ (internal relay), S $\triangle \triangle$ (step relay) and TR $\triangle \triangle$ (temporary relay). The statuses of output relays will be sent to the output terminal block.

③ Origin-line: The starting line at the left side of the Ladder Diagram.

④ Element: Element is the basic unit of a Ladder Diagram. An element consists of two parts as shown in the diagram below. One is the element symbol which is called "OP Code" and another is the reference number part which is called "Operand".

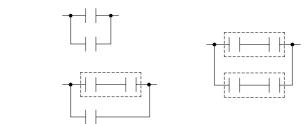
Element type	Symbol	Mnemonic instructions	Remark
A Contact (Normally OPEN)		(ORG ⋅ LD ៶ AND ៶ OR) □ΔΔΔΔ	\Box can be X \cdot Y \cdot M \cdot S \cdot
B Contact (Normally CLOSE)		(ORG ヽ LD ヽ AND ヽ OR) NOT	T ⋅ C (please refer to section 3.2)
Up Differential Contact	$ \square \triangle \triangle \triangle \triangle \\ - \square \uparrow \vdash -$	(ORG ヽ LD ヽ AND ヽ OR) TU	
Down Differential Contact	$ \square \land $	(ORG ヽ LD ヽ AND ヽ OR) TD	·
Open Circuit Contact	o o	(ORG、LD、AND、OR) OPEN	
Short Circuit Contact	••	(ORG、LD、AND、OR) SHORT	
Output Coil			
Inverse Output Coil			·
Latching Output Coil	Y△△△ —(L)		

Remark : please refer to section 3.2 for the ranges of $X \cdot Y \cdot M \cdot S \cdot T$ and C contacts. Please refer to section 5.2 for the characteristics of $X \cdot Y \cdot M \cdot S \cdot T$ and C contacts.

There are three special sequential instructions, namely OUT TRn, LD TRn and FOn, which were not displayed on the Ladder Diagram. Please refer to section 1.6 "Using the Temporary Relay" and section 5.1.4 "Function Output FO".

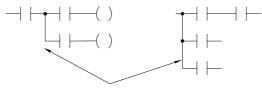
- (5) Node: The connection point between two or more elements (please refer to section 5.3)
- 6 Block: a circuit consists of two or more elements.

There are two basic types of blocks:

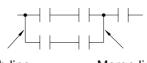

• Serial block : Two or more elements are connected in series to form a single row circuit.

Example:

• Parallel block: Parallel block is a type of a parallel closed circuit formed by connecting elements or serial blocks in parallel.

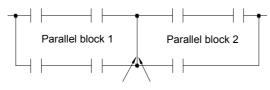

Example:

Remark: Complicated block can be formed by the combination of the single element, serial blocks and parallel blocks. When design a Ladder Diagram with mnemonic entry, it is necessary to break down the circuits into element, serial, and parallel blocks. Please refer to section 1.5.


⑦ Branch: In any network, branch is obtained if the right side of a vertical line is connected with two or more rows of circuits.

Example:

Merge line is defined as another vertical line at the right side of a branch line that merges the branch circuits into a closed circuit (forming a parallel block). This vertical line is called "Merge line".



Branch line

Merge line

If both the right and the left sides of the vertical line are connected with two or more rows of circuits, then it is both a branch line and a merge line as shown in the example below.

Example:

Block 1 merge line Block 2 branch line

(8) Network: Network is a circuit representing a specified function. It consists of the elements, branches, and blocks. Network is the basic unit in the Ladder Diagram which is capable of executing the completed functions, and the program of Ladder Diagram is formed by connecting networks together. The beginning of the network is the origin line. If two circuits are connected by a vertical line, then they belong to the same network. If there is no vertical line between the two circuits, then they belong to two different networks. Figure 1, shows three (1~3) networks.

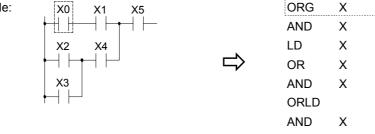
1.4 The Coding Rules of Mnemonic (Users of WinProladder can skip this section)

It's very easy to program FB-PLC with WinProladder software package, just key-in the ladder symbols as they appear on your CRT screen directly to form a ladder diagram program. But for the users who are using FPC-07 to program FB-PLC they have to translate ladder diagram into mnemonic instructions by themselves. Since FPC-07 only can input program with mnemonic instruction, this section till section 1.6 will furnish you with the coding rules to translate ladder diagrams into mnemonic instructions.

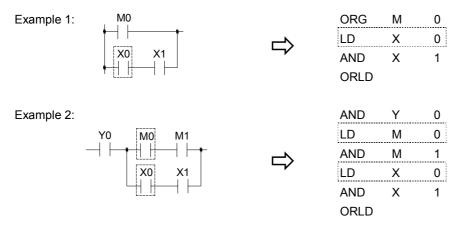
• The program editing directions are from left to right and from top to bottom. Therefore the beginning point of the network must be at the upper left corner of the network. Except the function instruction without the input control, the first instruction of a network must begin with the ORG and only one ORG instruction is permissible per network. Please refer to section 6.1.1 for further explanations.

0

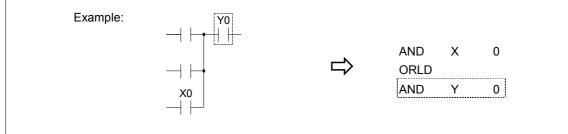
1


2

3


4

5

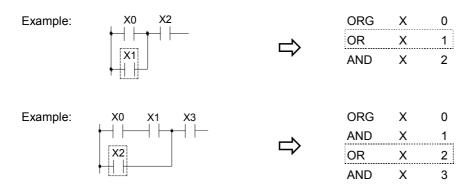


• Using LD instruction for connecting vertical lines (origin line or branch line) except at the beginning of the network.

Remark 1: Using the AND instruction directly if only one row of elements is serially connected to the branch line.

Remark 2: Also using the AND instruction directly if an OUT TR instruction has been used at a branch line to store the node statuses. 0 Example: AND Μ M0 X0 OUT TR 0 AND Х 0 OUT TR0 Y0 OUT Υ 1 LD TR0 LD TR 0

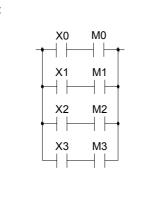
AND


Y

0

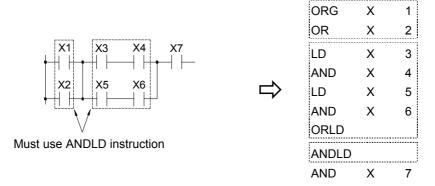
• Using AND instruction for serial connection of a single element.

• Using OR instruction for parallel connection of a single element.

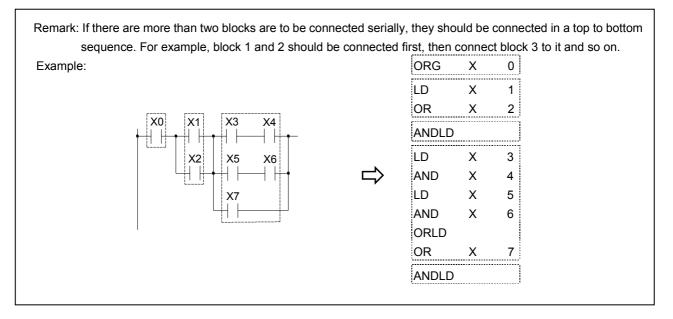

• If the parallel element is a serial block, ORLD instruction must be used.

Example:

Remark : If more than two blocks are to be connected in parallel, they should be connected in a top to bottom sequence. For example, block 1 and block 2 should be connected first, then connect block 3 to it and so on.


Example:

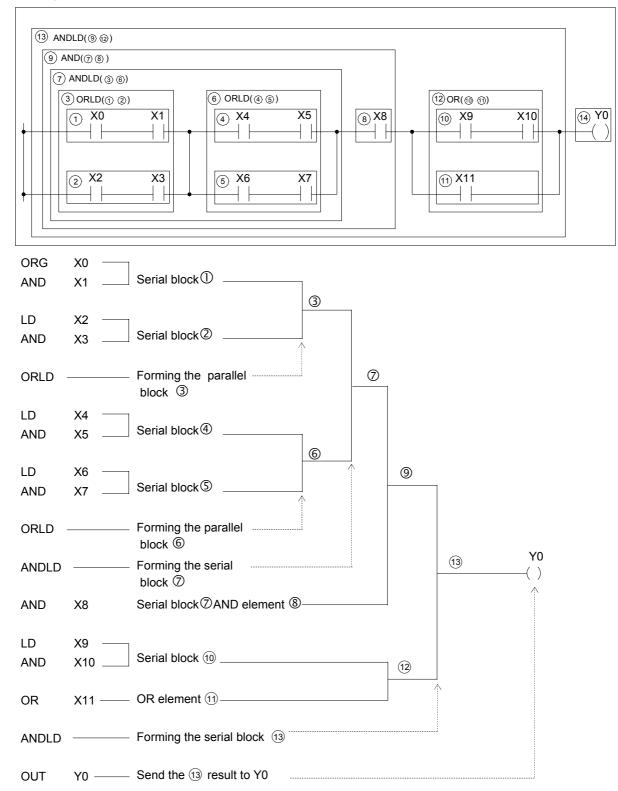
LD	Х	0
AND	М	0
LD	Х	1
AND	М	1
ORLD		
LD	Х	2
AND	М	2
ORLD		
LD	Х	3
AND	М	3


• ANDLD instruction is used to connect parallel blocks in series.

Example:

• The ANDLD instruction must be used if the element or serial block is in front of the parallel block. If the parallel block is in front of the element or serial block, AND instruction can be used to connect all parts together.

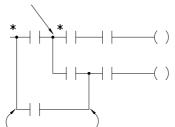
Example:	ANDLD instruction is not necessary		ORG AND	X X	0 1
	Serial Block		LD	Х	2
			OR	Х	3
			ANDLD		
			Х	4	
	Must use ANDLD instruction				


• The output coil instruction (OUT) can only be located at end of the network (the right end) and no other elements can be connected to it afterwards. The output coil can not connect to the origin line directly. If you want to connect the output coil to the origin line, connect it serially with a short circuit contact.

1.5 The De-Composition of a Network (Users of WinProladder can skip this section)

The key process of de-composition of a network is to separate the circuits that appear between two vertical lines into independent elements and serial blocks, then coding those elements and serial blocks according to the mnemonic coding rules and then connect them (with ANDLD or ORLD instruction) from left to right and top to bottom to form a parallel or a serial-parallel blocks, and finally to form a complete network.

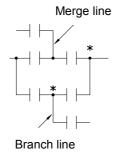
Sample diagram:



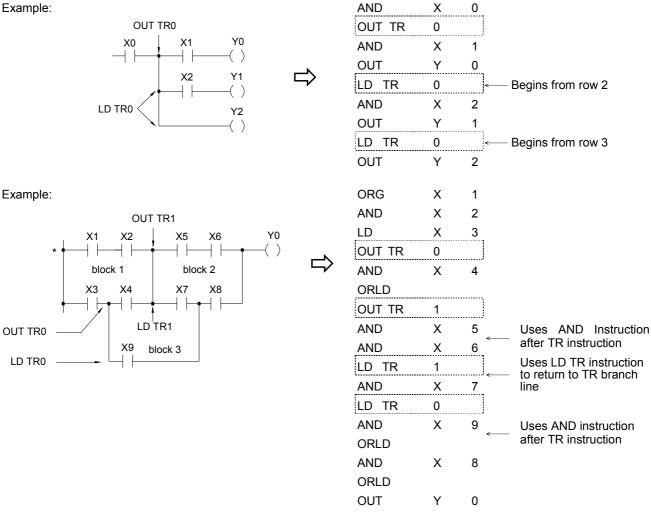
1.6 Using Temporary Relays (Users of WinProladder can skip this section)

The network de-composition method for mnemonic coding demonstrated in section 1.5 does not apply to the branched circuit or branched block. In order to input the program using the method shown in section 1.5, It must first to store the statuses of branched nodes in temporary relays. The program design should avoid having branched circuit or branched block as much as possible. Please refer the next section "Program Simplification Techniques". Two situations that must use the TR are described at below.

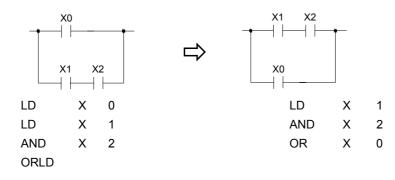
• Branched circuit: Merge line does not exist at the right side of the branch line or there is a merge line at the right side of the branch line but they are not in the same row.

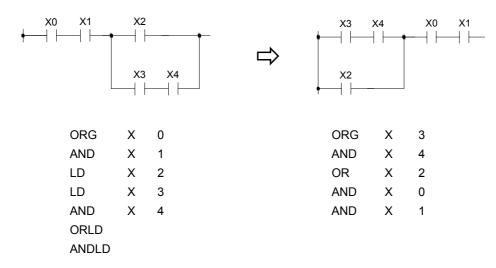

Example : * indicates setting of TR relay Without merge line

Although this branch has merge lines but they are not in the same row, so this is also a branched circuit

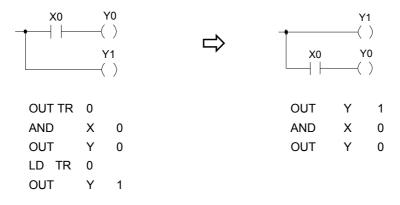

• Branched block : The horizontal parallel blocks with a branch in one of the blocks.

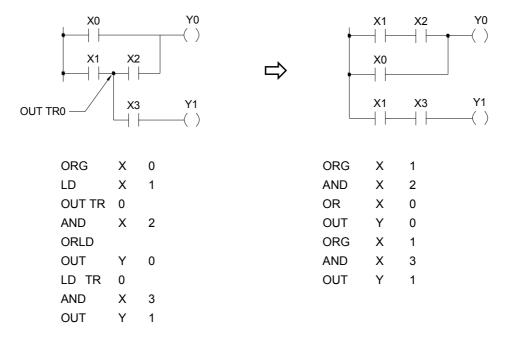
- Remark 1: The OUT TR instruction must be programmed at the top of the branched point. LD TRn instruction is used at the starting point of the circuits after second rows of the branch line for regaining the branch line status before you can connect any element to the circuits. AND instruction must be used to connect the first element after OUT TRn or LD TRn instruction. LD instruction is not allowed in this case.
- Remark 2: A network can have up to 40 TR points and the TR number can not be used repeatedly in the same network. It is recommended to use the numbers 1,2,3... with sequence. The TR number must be the same in the same branch line. For example, if a branch line uses OUT TR0, then starting from row 2, LD TR0 must be used for connection.
- Remark 3: If the branch line of a branched circuit or a branched block is the origin line, then ORG or LD instructions can be used directly and TR contact is not necessary.
- Remark 4: If any one of the branched circuit rows is not connected to the output coil (there are serially connected elements in between), and other circuits also exist after the second row, a TR instruction must be used at the branch points.

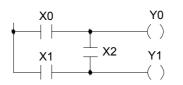

Example:


- The above sample diagram shows a typical example of connecting two parallel blocks in series. Block 3 is formed when the element X9 is introduced into the network and the two parallel blocks become the branched blocks.
- TR instruction is not necessary because the (*) point is the origin line.
- If have already used TR relay to connect two blocks serially, then ANDLD instruction is not necessary.

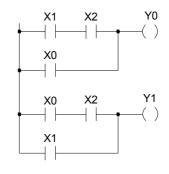
Program Simplification Techniques 1.7


• If a single element is connected in parallel to a serial block, The ORLD instruction can be omitted if the serial block is connected on top of this single element.

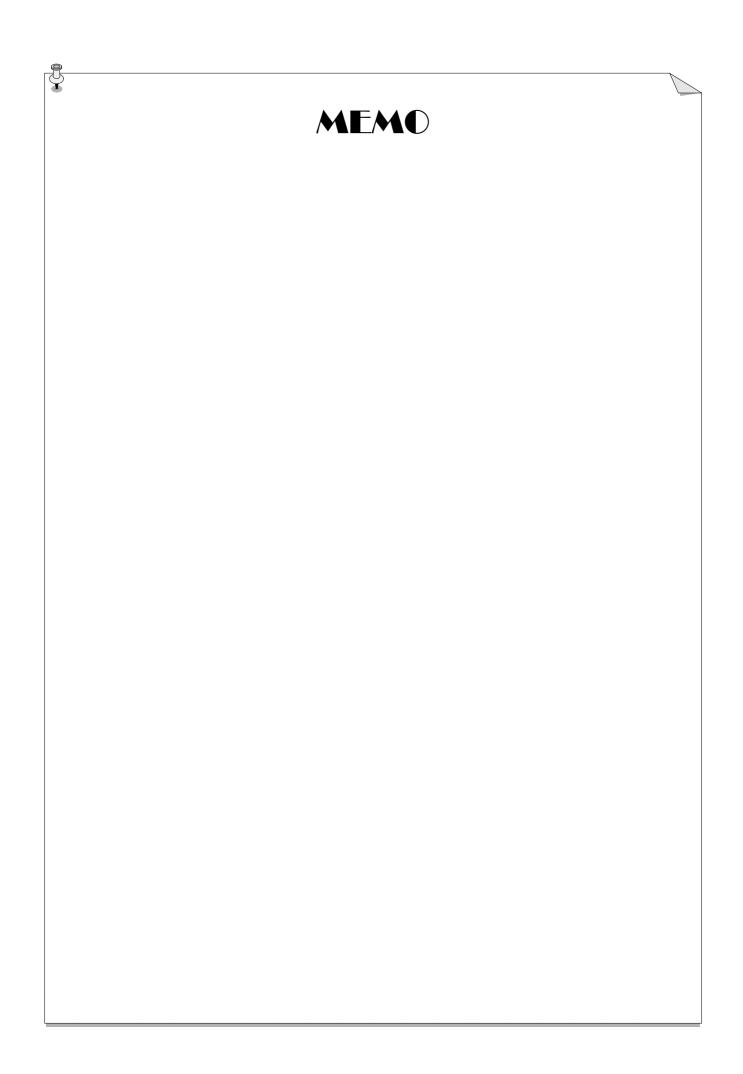

• When a single element or a serial block is connected in parallel with a parallel block, ANDLD instruction can be omitted if put the parallel block in front.

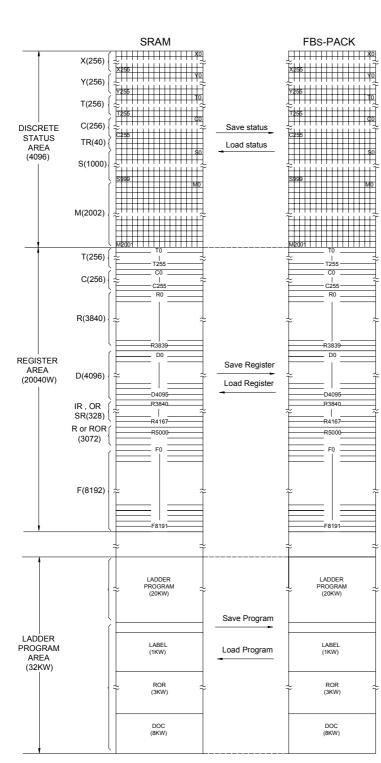

• If the branch node of a branch circuit is directly connected to the output coil, this coil could be located on top of the branch line (first row) to reduce the code.

• The diagram shown below indicates the TR relay and the ORLD instruction can be omitted.



• Conversion of the bridge circuit




⇒

This network structure is not allowed in PLC program

Х	1
Х	2
Х	0
Y	0
Х	0
Х	2
Х	1
Y	1
	X X Y X X X

Chapter 2 FBs-PLC Memory Allocation

2.1 FBs-PLC Memory Allocation

Remark:

- When the Read Only Register (ROR) has been configured by the user, the contents of R5000~R8071 (depends on the quantity of configuration) will be loaded from the ROR's during each time of power up or changing from STOP to RUN mode.
 - The user can access the ROR through the corresponding R5000~R8071. Write operation of function instructions are prohibited in this ROR area of corresponding R5000~ R8071. The others of R5000~R8071 that have not been configured for ROR, they can work as general purpose registers.
- There is a dedicated area of program memory to store the contents of Read Only Register.
 ROR can be configured up to 3072 words in maximum.

Memory Buffer in PLC

PP/Winproladder

2.2 Digital and Register Allocations

								[∗] ″ is default, user configurable	
Турее	Symbol	Item		Ra	inge	Remarks			
	х	Digital Input	Input (DI)		X0~X255 (2	56)	Mapping to external digital I/O		
	Y	Digital Outp	ut (I	ut (DO)		Y0~Y255 (2	56)		
	TR	Temporary	Rela	elay		TR0~TR39 ((40)	For branched points	
Digital 《		Internal Relays		Non-Retentive		M0~M799 (8 M1400~M19		M0 \sim M1399 configurable as Non-retentive or Retentive, M1400 \sim	
Bit Status	М	T(clays		Retentiv	e	M800~M139	99 (600)*	M1911 are fixed to Non-retentive	
tatu		Special Rela	ay			M1912~M20	001 (90)		
s ~	S	Step		Non-Ret	entive	S0~S499 (5	00)*	S20 \sim S499 configurable as Retentive	
	3	Relays		Retentiv	e	$S500\!\sim\!S999$	(500)*	S500 \sim S999 configurable as Non-retentive	
	Т	Timer conta	ict s	tatus		T0~T255 (2	56)		
	С	Counter cor	ntac	t status		$C0\!\sim\!C255$ (2	56)		
		CV of	0.0)1STime	Base	$T0 \sim T49$ (50)*		
	TMR	Timer	0.1	1S Time	Base	T50~T199	9 (150)*	The quantity of each time base can be configured	
		Register	1S	Time E	Base	T200~T25	55 (56)*		
		CV of	16	Retent	ve	C0~C139 (1	40)*	Configurable as Non-retentive	
	OTD	CTR Counter Register	0		etentivee	C140~C199	(60)*	Configurable as Retentive	
	CIR		32-bit	Retent	ve	C200~C239	(40)*	Configurable as Non-retentive	
			-bit	Non-Re	etentive	C240~C255	(16)	Configurable as Retentive	
	DR or	Data		Retenti	ve	R0~R2999 (D0~D3999 (R0~R3839 configurable as Non-retentive or Retentive,	
ע	HR			Non-Re	etentive	R3000~R38	39 (840)*	D0 \sim D3999 are fixed to Retentive	
Register	IR	Input Regist	ters			R3840~R39	03 (64)	Map to external AI Register input	
ter	OR	Output Reg	ister	rs		R3904~R39	67 (64)	Map to external AO /Register output	
« Word		System Spe	ecial	Registe	rs	R3968~R4 D4000~D4	. ,		
d Data	S	High-Spped	l Tin	ner Regi	ster	R4152~R41	54 (3)		
ta 📎	pecia	HSC	Ha	ardware	(4sets)	$DR4096 \sim D$	R4110		
	Special Register	Registers	So	oftware(4	1sets)	DR4112~DF	R4126		
	gist		ſ	Minute	Second	R4129	R4128		
	er	Calendar		Day	Hour	R4131	R4130		
			Registers		Year	Month	R4133	R4132	
					Week		R4134		
	DR	Data Regist	ers			R5000~R80	71(3072)*	As general purpose registers if ROR not been configured.	
	or ROR	Read Only I	Reg	isters		R5000~R80	71(0)*	Configurable as ROR for recipe like application	
	FR	File Registers			F0~F8191(8	192)	Need dedicated instruction to access		
	XR	Index Regis	ters	;		V,Z (2) \ P0~	- P9 (10)		

Remark: During power up or changing operation mode from STOP \rightarrow RUN, all contents in non-retentive relays or registers will be cleared to 0; the retentive relays or registers will remain the same state as before.

2.3 Special Relay Details

Relay No.	Function	Description
1. Stop, Pro	hibited Control	
M1912	Emergency Stop control	 If ON, PLC will be stopped (but not enter STOP mode) and all outputs OFF. This bit will be cleared when power up or changing operation mode from STOP→RUN.
M1913	Disable external outputs control	 All external outputs are turn off but the status of Y0~Y255 inside the PLC will not be affected.
M2001	Disable/Enable status retentive control	 If M2001 is 0 or enabled, the Disable/Enable status of all contacts will be reset to enable during power up or changing operation mode from STOP→RUN.
		 If M2001 is disabled and force ON, the Disable/Enable status & ON/OFF state of all contacts will remain as before during power up or changing operation mode from STOP→RUN.
		While testing, it may disable and force ON M2001 to keep the ON/OFF state of disabled contacts, but don't forget to enable the M2001 after testing.
2. CLEAR Co	ontrol	
M1914	Clear Non-Retentive Relays	Cleared When at 1
M1915	Clear Retentive Relays	Cleared When at 1
M1916	Clear Non-Retentive Registers	Cleared When at 1
M1917	Clear Retentive Registers	Cleared When at 1
M1918	Master Control (MC) Selection	 If 0, the pulse activated functions within the master control loop will only be executed once at first 0→1 of master control loop.
		If 1, the pulse activated functions within the master control loop will be executed every time while changing 0→1 of master control loop.
M1919	Function output control	• If 0, the functional outputs of some function instructions will memory the output state, even these instructions not been executed.
		If 1, the functional output of some function instructions without the memory ability.

Relay No.	Function	Description
3. Pulse Sigr	nals	
 M1920 M1921 M1922 M1923 M1924 M1925 	0.01S Clock pulse 0.1S Clock pulse 1S Clock pulse 60S Clock pulse Initial pulse (first scan) ② Scan clock pulses ③	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
► M1926	Reserved	
▼M1927	CTS input status of communication port 1	 0: CTS True (ON) 1: CTS False (OFF) When communication port 1 is used to connect with the printer or modem, it can use this signal and a timer to detect whether the printer or the modem is ready.
4. Error Mes	sages	
 M1928 M1929 M1930 M1931 	Reserved Reserved No expansion unit or exceed the limit on number of I/O points Immediate I/O not in the main unit range	 1: Indicating no expansion unit or exceed the limit on number of I/O points 1: Indicating that Immediate I/O not in the main unit range and the main unit cannot RUN
 ✓ M1932 ✓ M1933 ✓ M1934 ✓ M1935 	Unused System stack error Reserved	1: Indicating that system stack error
	t4 Controls (MC/MN)	
M1936	Port 3 busy indicator	0 : Port 3 Busy1 : Port 3 Ready
M1937 M1938	Port 3 finished indicator Port 4 busy indicator	 1 : Port 3 finished all communication transactions 0 : Port 4 Busy 1 : Port 4 Ready
M1939	Port 4 finished indicator	• 1 : Port 4 finished all communication transactions

Relay No.	Function	Description			
6. HSC0/HS	6. HSC0/HSC1 Controls (MC/MN)				
M1940	HSC0 software Mask	• 1: Mask			
M1941	HSC0 software Clear	• 1: Clear			
M1942	HSC0 software Direction	• 0: Count-up, 1: Count-down			
M1943	Reserved				
M1944	Reserved				
M1945	Reserved				
M1946	HSC1 software Mask	• 1: Mask			
M1947	HSC1software Clear	• 1: Clear			
M1948	HSC1 software Direction	O: Count-up, 1: Count-down			
M1949	Reserved				
M1950	Reserved				
M1951	Reserved				
7. RTC Cont	rols				
M1952	RTC setting				
M1953	±30 second Adjustment				
M1954	RTC installation checking				
M1955	Set value error				
8. Communic	ation/Timing/Counting Controls				
M1956	Selection of Message Fame Interval	• 0: Use system default value as Message Fame Interval Detection			
	Detection Time	Time for Modbus RTU communication protocol			
		• 1 : Use the high byte value of R4148 as Message Fame Interval			
		Detection Time for Modbus RTU protocol			
M1957	The CV value control after the timer	• 0: The CV value will continue timing until the upper limit is met			
	"Time Up"	after "Time Up"			
		• 1: The CV value will stop at the PV value after "Time Up" (User			
		may control M1957 within the program to control the individual			
		timer)			
M1958	Communication port 2 High Speed	O: Set Port 2 to Normal Speed Link			
	Link mode selection	1: Set Port 2 to High Speed CPU Link			
M4050	Modom dialing signal aslastian	%M1958 is only effective at slave station • 0: Dialing by TONE when Port 1 connecting with Modern			
M1959	Modem dialing signal selection	• 0: Dialing by TONE when Port 1 connecting with Modem.			
		1: Dialing by PULSE when Port 1 connecting wit			
M1060	Port 1 husy indicator	Modem.			
M1960	Port 1 busy indicator	• 0 : Port 1 Busy			
M1961	Port 1 finished indicator	 1 : Port 1 Ready 1 : Port 1 finished all communication transactions 			
M1961 M1962	Port 2 busy indicator	• 0 : Port 2 Busy			
1011902		• 1 : Port 2 Ready			
M1963	Port 2 finished indicator	 1 : Port 2 finished all communication transactions 			
M1963 M1964	Modem dialing control	 If Port 1 is connected with Modem, 			
1011304		when signal $0 \rightarrow 1$ will dial the phone number;			
		when signal $1 \rightarrow 0$ will hang-up the phone.			

Relay No.	Function	Description
M1965	Dialing success flag	• 1: Indicating that dialing is successful (when Port 1 is connected with Modem).
M1966	Dialing fail flag	 1: Indicating that dialing has failed (when Port 1 is connected with Modem).
M1967	Port 2 High Speed Link working	• 0: Continuous cycle.
	mode selection	 1: One cycle only. It will stop when the last communication transaction is completed (only effective at the master station).
M1968	Step program status	• 1: Indicating that there are more than 16 active steps in the step program at the same time.
M1969	Indirect addressing illegal write flag	 1: Indicating that a function with index addressing attempts to write cross over the boundary of different type of data.
M1970	Port 0 status	 1: Port 0 has received and transmitted a message
M1971	Port 1 status	1: Port1 has received and transmitted a message
M1972	Port 2 status	• 1: Port2 has received and transmitted a message
M1973	The CV value control after counting "Count-Up"	 0: Indicating that the CV value will continue counting up to the upper limit after "Time-Up".
		 1: Indicating that the CV value will stop at the PV value after "Count-Up" (User may control M1973 within the program to control the individual counter)
M1974	RAMP function (FUN95) slope	0: Time control for ramping
	control	1: Equivalent slope control for ramping
M1975	CAM function (FUN112) selection	 1: For the circular applications where the electric CAM switch (FUN112) can support the wrap around situation like the angle from 359° cross to 0°
9. HSC2~HS	C7 Controls	
M1976	HSC2 software Mask	• 1: Mask
M1977	HSC2 software Clear	• 1: Clear
M1978	HSC2 software Direction	• 0: Count-up, 1: Count-down
M1979	HSC3 software Mask	• 1: Mask
M1980	HSC3 software Clear	• 1: Clear
M1981	HSC3 software Direction	O: Count-up, 1: Count-down
M1982	HSC4 software Mask	• 1: Mask
M1983	HSC4 software Direction	• 0: Count-up, 1: Count-down
M1984	HSC5 software MASK	• 1: Mask
M1985	HSC5 software Direction	O: Count-up, 1: Count-down
M1986	HSC6 software Mask	• 1: Mask
M1987	HSC6 software Direction	O: Count-up, 1: Count-down
M1988	HSC7 software Mask	• 1: Mask
M1989	HSC7 software Direction	• 0: Count-up, 1: Count-down
M1990	Reserved	

Relay No.	Function	Description
10. PSO0~PS	SO3 Controls	
M1991	Selection of stopping the pulse output	• 0 : Immediately stop while stopping pulse output
	(FUN140)	• 1 : Slow down stop while stopping pulse output
M1992	PSO0 Busy indicator	• 0 : PSO0 Busy
		• 1 : PSO0 Ready
M1993	PSO1 Busy indicator	• 0 : PSO1 Busy
		• 1 : PSO1 Ready
M1994	PSO2 Busy indicator	• 0 : PSO2 Busy
		• 1 : PSO2 Ready
M1995	PSO3 Busy indicator	• 0 : PSO3 Busy
		• 1 : PSO3 Ready
M1996	PSO0 Finished indicator	• 1 : PSO0 finished the last step of motion
M1997	PSO1 Finished indicator	• 1 : PSO1 finished the last step of motion
M1998	PSO2 Finished indicator	• 1 : PSO2 finished the last step of motion
M1999	PSO3 Finished indicator	• 1 : PSO3 finished the last step of motion
M2000	Selection of Multi-Axis	1: Synchronized Multi-Axis
	synchronization for High Speed Pulse	
	Ouput (FUN140)	

2.4 Special Registers Details

Register No.	Function	Description
R3840	Input Registers CH0 : R3840	For Analog or Numeric inputs
R3903	 CH63 : R3903	
R3904	Output Registers CH0 : R3904	For Analog or Numeric outputs
R3967	CH63 : R3967	
R3968	Raw Temperature Registers TP0 : R3968	For temperature measurement
R3999	TP31 : R3999	
R4000	Reserved	
R4001	Reserved	
R4002	Reserved	
R4003	Reserved	
R4004	Reserved	
R4005	High Byte : Period of PWM =0, 2 seconds =1, 4 seconds =2, 8 seconds =3, 1 second =4, 16 seconds \geq 5, 32 seconds Low Byte : Period of PID calculation =0, 2 seconds =1, 4 seconds =2, 8 seconds =3, 1 second =4, 16 seconds \geq 5, 32 seconds The seconds	For PID temperature control
R4006	Threshold value of output ratio for heating/cooling loop abnormal detecting (Unit in %)	For PID temperature control
R4007	Threshold value of continuous time for heating/cooling loop abnormal detecting (Unit in second)	For PID temperature control
R4008	Maximum temperature for heating loop abnormal detecting	For PID temperature control
R4009	Reserved	

Register No.	Function	Description
R4010 R4011	Installed temperature sensor flag	Each bit represents 1 sensor, if bit value = 1 means installed.
R4012 R4013	PID Temperature control flag	Each bit represents 1 temperature point, if bit value = 1 means enable control.
R4014	Reserved	
R4015	Averaging of temperature value =0, no average on temperature =1, average by two readings =2, average by four readings =3, average by eight readings =4, average by sixteen readings	
R4016	Reserved	
R4017	Reserved	
R4018	Reserved	
R4019	Reserved	
R4020	Reserved	
R4024		
R4025	Total Expansion Input Registers	
R4026	Total Expansion Output Registers	
R4027	Total Expansion Digital Inputs	
R4028	Total Expansion Digital Outputs	
R4029	Reserved for system	
R4030 R4039	Tables to save or read back the data registers into or from ROM Pack	When the ROM Pack being used to save the ladder program and data registers, these tables describes which registers will be written into the ROM Pack. The addressed registers will be initialized from ROM Pack while power up.
R4040	Reply delay time settings for Port 0 and Port	Low Byte : For Port 0 (Unit in mS) High Byte : For Port 1 (Unit in mS)
R4041	Reply delay time settings for Port 2 and Port 3	Low Byte : For Port 2 (Unit in mS) High Byte : For Port 3 (Unit in mS)
R4042	Reply delay time settings for Port 4	Low Byte:For Port 4 (Unit in mS) High Byte:Reserved for system
R4043	Port 3 Communication Parameters Register	Set Baud Rate, Data bitof Port 3
R4044	Port 4 Communication Parameters Register	Set Baud Rate, Data bitof Port 4
R4045	Transmission Delay & Receive Time-out interval time Setting, while Port 3 being used as the master of	Low Byte:Port 3 Receive Time-out interval time (Unit in 10mS) High Byte:Port 3 Transmission Delay
	FUN151 or FUN150	(Unit in 10mS)

Register No.	Function	Description
R4046	Power up initialization mode selection of data	=5530H: Don't initialize the addressed data registers
	registers that has been written into ROM	been written into ROM Pack while power up
	Pack.	=Others : initialize the addressed data registers been
		written into ROM Pack while power up
R4047	Communication protocol setting for Port1 \sim	Set the FATEK or Modbus RTU communication
	Port4	protocol
R4048	Transmission Delay & Receive Time-out interval time Setting,	Low Byte:Port 4 Receive Time-out interval time (Unit in 10mS)
	while Port 4 being used as the master of	High Byte:Port 4 Transmission Delay
	FUN151 or FUN150	(Unit in 10mS)
R4049	CPU Status Indication	=A55AH, Force CPU RUN
		=0, Normal Stop
		=1, Function(s) existed that CPU does not support
		=2, PLC ID not matched with Program ID
		=3, Ladder checksum error
		=4, System STACK error
		=5, Watch-Dog error
		=6, Immediate I/O over the CPU limitation
		=7, Syntax not OK
		=8, Qty of expansion I/O modules exceeds
		=9, Qty of expansion I/O points exceeds
		=10, CRC error of system FLASH ROM
R4050	Port 0 Communication Parameters Register	Set Baud Rate of Port 0
R4051	Reserved	
R4052	Indicator while writing ROM Pack	
R4053	Reserved	
R4054	Define the master station number	If the master station number is 1,it can ignore this
	of the High-Speed CPU Link network	register.
	(FUN151 Mode 3)	To set the master station number other than 1 should:
	(Low Byte : Station number
		High Byte: 55H
R4055	PLC station number	 If high byte is not equal 55H, R4055 will show the station number of this PLC
		 If want to set PLC station number then R4055 should set to:
		Low Byte : Station number
		High Byte: 55H
	High Byte :Reserved	
R4056	Low Byte: High speed pulse output frequency dynamic control	Low Byte: =5AH, can dynamically change the output frequency of High Speed Pulse Output
R4057	Power off counter	The value will be increased by 1 while power up
R4058	Error station number while Port 2 in High	Used by FUN151 Mode 3 of Port 2
	Speed CPU Link	

Register No.	Function	Description
R4059	Error code while Port 2 in High Speed CPU	Used by FUN151 Mode 3 of Port 2
	LINK mode	High byte Low Byte
		R4059 Err code Err count H
		Error code: 0AH, No response
		01H, Framing Error
		02H, Over-Run Error
		04H, Parity Error
		08H, CRC Error
R4060	Error code of PSO 0	The error codes are:
		1: Parameter 0 error
		2: Parameter 1 error
		3: Parameter 2 error
		4: Parameter 3 error
		5: Parameter 4 error
		7: Parameter 6 error 8: Parameter 7 error
		9: Parameter 8 error
		10: Parameter 9 error
		30: Speed setting reference number error
		31: Speed value error
		32: Stroke setting reference number error
		33: Stroke value error
		34: Illegal positioning program
		35: Step over
		36: Step number exceeds 255
		37: Highest frequency error
		38: Idle frequency error
		39: Movement compensation value too large
		40: Movement value exceeds range
		41: DRVC instruction not allow ABS addressing
R4061	Error code of PSO 1	Same as above
R4062	Error code of PSO 2	Same as above
R4063	Error code of PSO 3	Same as above
R4064		PSO 0
R4065	Being completed step number of positioning	PSO 1
R4066	program	PSO 2
R4067		PSO 3
R4068		
	Reserved	
R4071		

Register No.	Function	Description
R4072		Low Word of PSO 0
R4073		High Word of PSO 0
R4074		Low Word of PSO 1
R4075		High Word of PSO 1
R4076	Pulse count remaining for output	Low Word of PSO 2
R4077		High Word of PSO 2
R4078		Low Word of PSO 3
R4079		High Word of PSO 3
R4080		Low Word of PSO 0
R4081		High Word of PSO 0
R4082		Low Word of PSO 1
R4083	Current output frequency	High Word of PSO 1
R4084		Low Word of PSO 2
R4085		High Word of PSO 2
R4086		Low Word of PSO 3
R4087		High Word of PSO 3
R4088		Low Word of PSO 0
R4089		High Word of PSO 0
R4090		Low Word of PSO 1
R4091	Current pulse position	High Word of PSO 1
R4092		Low Word of PSO 2
R4093		High Word of PSO 2
R4094		Low Word of PSO 3
R4095		High Word of PSO 3

Register No.	Function	Description
R4096	HSC0 current value Low Word	
R4097	HSC0 current value High Word	
R4098	HSC0 preset value Low Word	
R4099	HSC0 preset value High Word	
R4100	HSC1 current value Low Word	
R4101	HSC1 current value High Word	
R4102	HSC1 preset value Low Word	
R4103	HSC1 preset value High Word	
R4104	HSC2 current value Low Word	
R4105	HSC2 current value High Word	
R4106	HSC2 preset value Low Word	
R4107	HSC2 preset value High Word	
R4108	HSC3 current value Low Word	
R4109	HSC3 current value High Word	
R4110	HSC3 preset value Low Word	
R4111	HSC3 preset value High Word	
R4112	HSC4 current value Low Word	
R4113	HSC4 current value High Word	
R4114	HSC4 preset value Low Word	
R4115	HSC4 preset value High Word	
R4116	HSC5 current value Low Word	
R4117	HSC5 current value High Word	
R4118	HSC5 preset value Low Word	
R4119	HSC5 preset value High Word	
R4120	HSC6 current value Low Word	
R4121	HSC6 current value High Word	
R4122 R4123	HSC6 preset value Low Word	
R4123	HSC6 preset value High Word HSC7 current value Low Word	
R4124 R4125	HSC7 current value High Word	
R4125	HSC7 preset value Low Word	
R4120	HSC7 preset value High Word	
R4128	Second of calendar	
R4129	Minute of calendar	
R4130	Hour of calendar	
R4131	Day of calendar	
R4132	Month of calendar	
R4133	Year of calendar	
R4134	Day of week of calendar	
R4135	Reserved	
F R4136	Current scan time	• Error < ±1ms
📕 R4137	Maximum scan time	 Re-calculate when PLC changes from STOP to RUN
📕 R4138	Minimum scan time	

Register No.	Function	Description
R4139	CPU Status	Bit0 =0, PLC STOP
		=1, PLC RUN
		Bit1 , Reserved
		Bit2 =1, Ladder program checksum error
		Bit3 =0, Without ROM Pack
		=1, With ROM Pack
		Bit4 =1, Watch-Dog error
		Bit5 =1, MA model main unit
		Bit6 =1, With ID protection
		Bit7 =1, Emergency stop
		Bit8 =1, Immediate I/O over range
		Bit9 =1, System STACK error
		Bit10 =1, ASIC failed
		Bit11 =1, Function not allowed
		Bit12 , Reserved
		Bit13 =1, With communication board
		Bit14 =1, With calendar
		Bit15 =1, MC main unit
R4140		
R4141		
R4142	Telephone Number	
R4143		
R4144		
R4145		

Register No.	Function	Description
R4146	Port 1 Communication Parameters Register	Set Baud Rate, Data bit of Port 1
R4147	Transmission Delay & Receive Time-out interval time Setting, while Port 1 being used as the master of FUN151 or FUN150	Low Byte:Port 1 Receive Time-out interval time (Unit in 10mS) High Byte:Port 1 Transmission Delay (Unit in 10mS)
R4148	Message Frame Detection Time Interval	While the communication port being used as the master or slave of Modbus RTU protocol, the system will give the default time interval to identify each packet of receiving message; except this, the user can set this time interval through the high byte setting of R4148 and let M1956 be 1, to avoid the overlap of different packet of message frame.
		M1956=1, High Byte of R4148 is used to set the new message detection time interval for Port $1 \sim$ Port 4 (Unit in mS)
		.While the communication port being used to communicate with the intelligent peripherals through FUN151 instruction, if the communication protocol without the end of text to separate each packet of message frame, it needs message detection time interval to identify the different packet. High byte of R4148 is used for this setting for Port 1~Port 4.
		(Unit in mS)
R4149	Modem Interface Setting & Port0 without checking of station number for FATEK's external communication protocol	 High Byte of R4149: =55H, Remote-Diagnosis/Remote-CPU-Link by way of Port 1 through Modem connection, it supports user program controlled dial up function
		=AAH, Remote diagnosis by way of Port 1 through Modem connection, it supports Passive receiving & Active dialing operation mode
		=Others, without above function
		 Low Byte of R4149: =1, Port 0 without checking of station number for FATEK's external communication protocol (communicating with MMI/SCADA)
		=Others, Port 0 checks station number, it allows multi-drop network for data acquisition.
R4150	Power on I/O service delay time setting	• PLC is ready for I/O service after this delay time while power up. The unit is in 0.01S. The default value is 100.
R4151	Circular 1mS time base timer	• The content of R4151 will be increased by 1 every 1mS. It can be used for a more precise timing application.
R4152	Low word of HSTA CV register	HSTA is high speed timer in 0.1 mS resolution
R4153 R4154	High word of HSTA CV register PV register of HSTA	The HSTA can act as 32-bit cyclic timer or fixed time interrupt timer

Register No.	Function	Description
R4155	Port 1 & Port 2 without station number checking for FATEK's external communication protocol	 Low Byte of R4155: =1, Port 1 without station number checking for FATEK's external communication protocol (communicating with MMI/SCADA) =Others,Port 1 checks station number, it allows multi-drop network for data acquisition
		 High Byte of R4155: =1, Port 2 without station number checking for FATEK's external communication protocol (communicating with MMI/SCADA) =Others,Port 2 checks station number, it allows multi-drop network for data acquisition
R4156	Port 3 & Port 4 without station number checking for FATEK's external communication protocol	 Low Byte of R4156: =1, Port 3 without station number checking for FATEK's external communication protocol (communicating with MMI/SCADA) =Others,Port 3 checks station number, it allows multi-drop network for data acquisition
		 High Byte of R4156: =1, Port 4 without station number checking for FATEK's external communication protocol (communicating with MMI/SCADA) =Others,Port 4 checks station number, it allows
		multi-drop network for data acquisition
R4157	System used	
R4158	Port 2 Communication Parameters Register (Not for High Speed CPU Link)	Set Baud Rate, Data bitof Port 2
R4159	Transmission Delay & Receive Time-out interval time Setting, while Port 2 being used as the master of FUN151 or FUN150	Low Byte : Port 2 Receive Time-out interval time (Unit in 10mS) High Byte : Port 2 Transmission Delay (Unit in 10mS)
R4160	Port2 RX/TX time out setting for High Speed CPU Link	High Byte of R4160 : =56H, User setting mode if the system default works not well, Low Byte of R4160 is used for this setting (Not suggest) =Others, system will give the default value according to the setting of R4161
R4161	Port 2 Communication Parameters Register (For High Speed CPU Link)	 Set Baud Rate, Parityof Port 2 Data bit is fixed to 8-bit Baud Rate≥38400 bps
R4162	Fixed time interrupt enable/disable control	B7B6B5B4B3B2B1B0100mS50mS10mS5mS4mS3mS2mS1mSBit=0, interrupt enabledBit=1, interrupt disabled

Register No.	Function	Description
R4163	Modem dialing control setting	Low Byte of R4163 :
		=1, Ignore the dialing tone and the busy tone when dialing.
		=2, Wait the dialing tone but ignore the busy tone when dialing.
		=3, Ignore the dialing tone but detect the busy tone when dialing.
		=4, Wait the dialing tone and detect the busy tone when dialing.
		=Any other value treated as value equal 4.
		• High Byte of R4163 :
		The Ring count setting for Modem auto answer
R4164	V index register	
R4165	Z index register	
R4166	System used	
R4167	Model of main unit	Low Byte of R4167:
		=0, 6I + 4O (FBs-10xx)
		=1, 8I + 6O (FBs-14xx)
		=2, 12I + 8O (FBs-20xx)
		=3, 14I + 10O (FBs-24xx)
		=4, 20I + 12O (FBs-32xx)
		=5, 24I + 16O (FBs-40xx)
		=6, 36I + 24O (FBs-60xx)
		=7, 28I + 16O (FBs-44MN)
		High Byte of R4167:
		=0, MA
		=1, MC
		=2, MN
		=3, MU

Register No.	Function	Description
D4000	Port 1 User-defined Baud Rate Divisor	Port 1 user-defined Baud Rate (1125~1152000 bps)
	(R4146 must be 56XFH)	D4000 = (18432000/Baud Rate) - 1
D4001	Port 2 User-defined Baud Rate Divisor	Port 2 user-defined Baud Rate (1125~1152000 bps)
	(R4158 must be 56XFH)	D4001 = (18432000/Baud Rate) - 1
D4002	Port 3 User-defined Baud Rate Divisor	Port 3 user-defined Baud Rate (1125~1152000 bps)
	(R4043 must be 56XFH)	D4002 = (18432000/Baud Rate) - 1
D4003	Port 4 User-defined Baud Rate Divisor	Port 4 user-defined Baud Rate (1125~1152000 bps)
	(R4044 must be 56XFH)	D4003 = (18432000/Baud Rate) - 1
D4004		
	Reserved	
D4079		
D4080	P0 index register	
D4081	P1 index register	
D4082	P2 index register	
D4083	P3 index register	
D4084	P4 index register	
D4085	P5 index register	
D4086	P6 index register	
D4087	P7 index register	
D4088	P8 index register	
D4089	P9 index register	
D4090		
	Reserved	
D4095		

Remark: All the special relays or registers attached with "" symbol shown in the above table are write prohibited.

For the special relays attached with "" symbol also has following characteristics

. Forced and Enable/Disable operation is not allowed.

. Can't be referenced by TU/TD transitional contact (contact will always open)

Chapter 3 FBs-PLC Instruction Lists

3.1 Sequential Instructions

Instruction	Operand	Symbol	Function Descriptions	Execution Time	Instruction type
ORG		┝┿─┤┝──	Starting a network with a normally open (A)		
ORG NOT	X,Y,M,	↓ /	contact Starting a network with a normally closed (B) contact	0.33uS	
ORG TU	S,T,C	↓ ↑	Starting a network with a differential up (TU) contact		Network
ORG TD			Starting a network with a differential down (TD) contact	0.54uS	starting instructions
ORG OPEN		• • •	Starting a network with a open circuit contact	0.00.0	
ORG SHORT		+	Starting a network with a short circuit contact	0.33uS	
LD			Starting a relay circuit from origin or branch line with a normally open contact	0.33uS	
LD NOT	X,Y,M,		Starting a relay circuit from origin or branch line with a normally closed contact	0.0000	Origin or
LD TU	S,T,C		Starting a relay circuit from origin or branch line with a differential up contact	0.54uS	branch line
LD TD			Starting a relay circuit from origin or branch line with a differential down contact	0.0100	starting instructions
LD OPEN		o o	Starting a relay circuit from origin or branch line with a open circuit contact	0.33uS	
LD SHORT		••	Starting a relay circuit from origin or branch line with a short circuit contact	0.0000	
AND		-+	Serial connection of normally open contact	0.33uS	
AND NOT	X,Y,M,		Serial connection of normally closed contact	0.3305	
AND TU	S,T,C	$- \!\uparrow\! -$	Serial connection of differential up contact	0.5440	Serial
AND TD			Serial connection of differential down contact	0.54uS	connection instructions
AND OPEN		o o	Serial connection of open circuit contact	0.33uS	
AND SHORT		••	Serial connection of short circuit contact	0.0000	
OR			Parallel connection of normally open contact	0.33uS	
OR NOT	X,Y,M,		Parallel connection of normally closed contact	0.5505	
OR TU	S,T,C		Parallel connection of differential up contact	0.54uS	Parallel connection
OR TD		⁺⊣↓⊢⁺	Parallel connection of differential down contact	0.0403	instructions
OR OPEN		⁺ _₀ _ †	Parallel connection of open circuit contact	0.33uS	
OR SHORT		<u>+</u> +	Parallel connection of short circuit contact	0.0000	
ANDLD			Serial connection of two circuit blocks	0.33uS	Blocks merge
ORLD			Parallel connection of two circuit blocks	0.0000	instructions

Instruction	Operand	Symbol	Function Descriptions	Execution Time	Instruction type
OUT	VMO	— ()	Send result to coil		
OUT NOT	Y,M,S	(/)	Send inverted result to coil	0.33uS	Coil output
OUT L	Y	(L)	Send result to an external output coil and appoint it as of retentive type	1.09uS	instruction
OUT	TD		Save the node status to a temporary relay		
LD	TR		Load the temporary relay	0.33uS	
ΤU		↑	Take the transition up of the node status	0.33uS	Node operation instruction
TD		↓	Take the transition down of the node status	0.33uS	
NOT		_/_	Invert the node status	0.33uS	
SET		← (S)	Set a coil	0.33uS 1.09uS	
RST		→ (R)	Reset a coil	0.33uS 1.09uS	

• The 36 sequential instructions listed above are all applicable to every models of FBs-PLC.

3.2 Function Instructions

There are more than 100 different FBs-PLC function instructions. If put the "D" and "P" derivative instructions into account, the total number of instructions is over 300. On top of these, many function instructions have multiple input controls (up to 4 inputs) which can have up to 8 different types of operation mode combinations. Hence, the size of FBs-PLC instruction sets is in fact not smaller than that of a large PLC. Having powerful instruction functions, though may help for establishing the complicated control applications, but also may impose a heavy burden on those users of small type PLC's. For ease of use, FATEK PLC function instructions and 4 SFC instructions and the advanced function group which includes other more complicated function instructions, such as high-speed counters and interrupts. This will enable the beginners and the non-experienced users to get familiar with the basic function very quickly and to assist experienced users in finding what they need in the advanced set of function instructions.

The instructions attached with " \star " symbol are basic functions which amounts to 26 function instructions and 4 SFC instructions. All the basic functions will be explained in next chapter. The details for the reset of functions please refer advanced manual.

■ General Timer/Counter Function Instructions

FUN No.	Name	Operand	Derivative Instruction	Eunction descriptions
*	T nnn	PV		General timer instructions ("nnn" range $0 \sim 255$)
*	C nnn	PV		General counter instructions ("nnn" range $0\sim$ 255)
★ 7	UDCTR	CV,PV	D	16-Bit or 32-Bit up/down counter

■ Single Operand Function Instructions

★4	DIFU	D	To get the up differentiation of a D relay and store	the result to D
★ 5	DIFD	D	To get the down differentiation of a D relay and sto	ore the result to D
★ 10	TOGG	D	Toggle the status of the D relay	

■ Setting/Resetting

*	SET	D	DP	Set all bits of register or a discrete point to 1
*	RST	D	DP	Clear all bits of register or a discrete point to 0
114	Z-WR	D	Р	Zone set or clear

SFC Instructions

*	STP	Snnn	STEP declaration
*	STPEND		End of the STEP program
*	ТО	Snnn	STEP divergent instruction
*	FROM	Snnn	STEP convergent instruction

Mathematical Operation Instructions

★ 11	(+)	Sa,Sb,D	DP	Perform addition of Sa and Sb and then store the result to D
★ 12	(-)	Sa,Sb,D	DP	Perform subtraction of Sa and Sb and then store the result to D
★ 13	(*)	Sa,Sb,D	DP	Perform multiplication of Sa and Sb and then store the result to D
★ 14	(⁄)	Sa,Sb,D	DP	Perform division of Sa and Sb and then store the result to D
★ 15	(+1)	D	DP	Adds 1 to the D value
★ 16	(-1)	D	DP	Subtracts 1 from the D value
23	DIV48	Sa,Sb,D	Р	Perform 48 bits division of Sa and Sb and then store the result to D
24	SUM	S,N,D	DP	Take the sum of the successive N values beginning from S and store it in D
25	MEAN	S,N,D	DP	Take the mean average of the successive N values beginning from S and store it in D
26	SQRT	S,D	DP	Take the square root of the S value and store it in D
27	NEG	D	DP	Take the 2's complement (negative number) of the D value and store it back in D
28	ABS	D	DP	Take the absolute value of D and store it back in D
29	EXT	D	Ρ	Take the 16 bit numerical value and extend it to 1 32 bit numerical value (value will not change)
30	PID	TS,SR,OR, PR,WR		PID operation
31	CRC	MD,S,N,D	Р	CRC16 checksum calculation
32	ADCNV	PL,S,N,D		Offset and full scale conversion

FUN No.	Name	Operand	Derivative Instruction	Function descriptions
200	l→F	S,D	DP	Integer to floating point number conversion
201	F→I	S,D	DP	Floating point number to integer conversion
202	FADD	Sa,Sb,D	D	Addition of floating point number
203	FSUB	Sa,Sb,D	D	Subtraction of floating point number
204	FMUL	Sa,Sb,D	D	Multiplication of floating point number
205	FDIV	Sa,Sb,D	D	Division of floating point number
206	FCMP	Sa,Sb	D	Comparison of floating point number
207	FZCP	Sa,Sb	D	Zone comparison of floating point number
208	FSQR	S,D	D	Square root of floating point number
209	FSIN	S,D	D	SIN trigonometric function
210	FCOS	S,D	D	COS trigonometric function
211	FTAN	S,D	D	TAN trigonometric function
212	FNEG	D	Р	Change sign of floating point number
213	FABS	D	Р	Take absolute value of floating point number

Logical Operation Instructions

★ 18	AND	Sa,Sb,D	DP	Perform logical AND for Sa and Sb and store the result to D
★ 19	OR	Sa,Sb,D	DP	Perform logical OR for Sa and Sb and store the result to D
35	XOR	Sa,Sb,D	DP	Take the result of the Exclusive OR logical operation made between Sa and Sb, and store it in D
36	XNR	Sa,Sb,D	DP	Take the result of the Exclusive OR logical operation made between Sa and Sb, and store it in D

Comparison Instructions

★ 17	CMP	Sa,Sb	DP	Compare the data at Sa and data at Sb and output the result to function outputs (FO)
37	ZNCMP	S,Su,SL	DP	Compare S with the zones formed by the upper limit Su and lower limit SL, and set the result to FO0~FO2

Data Movement Instructions

FUN No.	Name	Operand	Derivative instruction	Function descriptions
★ 8	MOV	S,D	DP	Transfer the W or DW data specified at S to D
★ 9	MOV/	S,D	DP	Invert the W or DW data specified at S, and then transfers the result to D
40	BITRD	S,N	DP	Read the status of the bits specified by N within S, and send it to $\ensuremath{FO0}$
41	BITWR	D,N	DP	Write the INB input status into the bits specified by N within D
42	BITMV	S,Ns,D,Nd	DP	Write the status of bit specified by N within S into the bit specified by N within D $% \left({{\mathbf{N}_{\mathrm{S}}}} \right)$
43	NBMV	S,Ns,D,Nd	DP	Write the Ns nibble within S to the Nd nibble within D
44	BYMV	S,Ns,D,Nd	DP	Write the byte specified by Ns within S to the byte specified by Nd within D
45	XCHG	Da,Db	DP	Exchange the values of Da and Db
46	SWAP	D	Р	Swap the high-byte and low-byte of D
47	UNIT	S,N,D	Р	Take the nibble 0 (NB0) of the successive N words starting from S and combine the nibbles sequentially then store in D $$
48	DIST	S,N,D	Р	De-compose the word into successive N nibbles starting from nibble 0 of S, and store them in the NB0 of the successive N words starting from D
49	BUNIT	S,N,D	Р	Low byte of words re-unit
50	BDIST	S,N,D	Р	Words split into multi-byte
160	RW-FR	Sa,Sb,Pr,L	DP	File register access

Shifting/Rotating Instructions

★6	BSHF	D	DP	Shift left or right 1 bit of D register
51	SHFL	D,N	DP	Shift left the D register N bits and move the last shifted out bits to OTB. The empty bits will be replaced by INB input bit
52	SHFR	D,N	DP	Shift right the D register N bits and move the last shifted out bits to OTB, The empty bits will be replaced by INB input bit
53	ROTL	D,N	DP	Rotate left the D operand N bits and move the last rotated out bits to OTB
54	ROTR	D,N	DP	Rotate right the D operand N bits and move the last rotated out bits to OTB

Code Conversion Instruction

★ 20	→BCD	S,D	DP	Convert binary data of S into BCD data and store the result to D
★ 21	→BIN	S,D	DP	Convert BCD data of S into binary data and store the result to D
55	B→G	S,D	DP	Binary to Gray code conversion

FUN No.	Name	Operand	Derivative instruction	Function descriptions
56	G→B	S,D	DP	Gray code to Binary conversion
57	DECOD	S,Ns,NL,D	Р	Decode the binary data formed by NL bits starting from Ns bit within S, and store the result in the register starting from D
58	ENCOD	S,Ns,NL,D	Р	Encoding the \ensuremath{NL} bits starting from the \ensuremath{Ns} bit within S, and store the result in D
59	→7SG	S,N,D	Р	Convert the N+1 number of nibble data within S, into 7 segment code, then store in \ensuremath{D}
60	→ASC	S,D	Р	Write the constant string S (max. 12 alpha-numeric or symbols) into the registers starting from D
61	→SEC	S,D	Ρ	Convert the time data (hours, minutes, seconds) of the three successive registers starting from S into seconds data then store to D
62	→HMS	S,D	Р	Convert the seconds data of S into time data (hours, minutes, seconds) and store the data in the three successive registers starting from D
63	→HEX	S,N,D	Ρ	Convert the successive N ASCII data starting from S into hexadecimal data and store them to D
64	→ASCⅡ	S,N,D	Ρ	Convert the successive N hexadecimal data starting from S into ASCII codes and store them to D

Flow Control Instructions

★ 0	MC	N		The start of master control loop
★ 1	MCE	N		The end of master control loop
★ 2	SKP	N		The start of skip loop
★ 3	SKPE	N		The end of skip loop
	END			End of Program
65	LBL	1∼6 alphanumeric		Define the label with 1~6 alphanumeric characters
66	JMP	LBL	Р	Jump to LBL label and continues the program execution
67	CALL	LBL	Р	Call the sub-program begin with LBL label
68	RTS			Return to the calling main program from sub-program
69	RTI			Return to interrupted main program from sub-program
70	FOR	N		Define the starting point of the FOR Loop and the loop count N
71	NEXT			Define the end of FOR loop

I/O Function Instructions

FUN No.	Name	Operand	Derivative instruction	Function descriptions
74	IMDIO	D,N	Р	Update the I/O signal on the main unit immediately
76	TKEY	IN,D,KL	D	Convenient instruction for 10 numeric keys input
77	HKEY	IN,OT,D,KL	D	Convenient instruction for 16 keys input
78	DSW	IN,OT,D	D	Convenient instruction for digital switch input
79	7SGDL	S,OT,N	D	Convenient instruction for multiplexing 7-segment display
80	MUXI	IN,OT,N,D		Convenient instruction for multiplexing input instruction
81	PLSO	MD, Fr, PC UY,DY,HO	D	Pulse output function (for bi-directional drive of step motor)
82	PWM	TO,TP,OT		Pulse width modulation output function
83	SPD	S,TI,D		Speed detection function
84	TDSP	S,Yn,Dn, PT,IT,WS		7/16-segment LED display control
86	TPCTL	Md,Yn,Sn,Zn, Sv,Os,PR IR,DR,OR,WR		PID Temperature control
139	HSPWM	PW,OP,RS, PN,OR,WR		Hardware PWM pulse output

Cumulative Timer Function Instructions

87	T.01S	CV,PV	Cumulative timer using 0.01S as the time base
88	T.1S	CV,PV	Cumulative timer using 0.1S as the time base
89	T1S	CV,PV	Cumulative timer using 1S as the time base

Watch Dog Timer Control Function Instructions

90	WDT	Ν	Р	Set the WDT timer time out time to N mS
91	RSWDT		Р	Reset the WDT timer to 0

High Speed Counter Control Function Instructions

92	HSCTR	CN	Р	Read the current CV value of the hardware HSCs, HSC0~HSC3, or HST on ASIC to the corresponding CV register in the PLC respectively
93	HSCTW	CN,D	Р	Write the CV or PV register of HSC0 \sim HSC3 or HST in the PLC to CV or PV register of the hardware HSC or HST on ASIC respectively

Report Function Instructions

94	ASCWR	MD,S,Pt	Parse and generate the report message based on the ASCI formatted data starting from the address S. Then report message wil send to port1
----	-------	---------	---

Ramp Function Instructions

FUN No.	Name	Operand	Derivative instruction	Function descriptions
95	RAMP	Tn,PV,SL, SU,D		Ascending/Descending convenient instruction

Communication Function Instructions

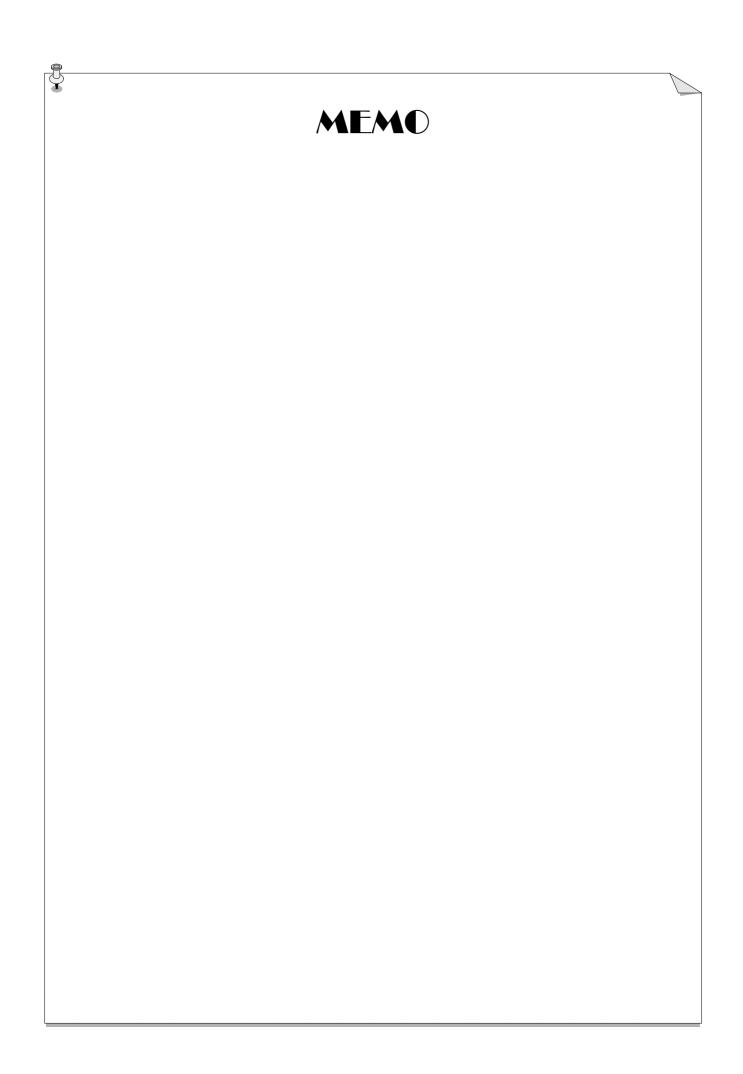
	150	M-Bus	MD,S,Pt	Modbus protocol communication
ſ	151	CLINK	MD,S,Pt	Fatek/Generic protocol communication

Table Function Instructions

100	R→T	Rs,Td,L,Pr	DP	Store the Rs value into the location pointed by the Pr in Td
101	T→R	Ts,L,Pr,Rd	DP	Store the value at the location pointed by the Pr in Ts into Rd
102	T→T	Ts,Td,L,Pr	DP	Store the value at the location pointed by the Pr in Ts into the location pointed by the Pr in Td
103	BT_M	Ts,Td,L	DP	Copy the entire contents of Ts to Td
104	T_SWP	Ta,Tb,L	DP	Swap the entire contents of Ta and Tb
105	R-T_S	Rs,Ts,L,Pr	DP	Search the table Ts to find the location with data different or equal to the value of Rs. If found store the position value into the Pr
106	T-T_C	Ta,Tb,L,Pr	DP	Compare two tables Ta and Tb to search the entry with different or same value. If found store the position value into the Pr
107	T_FIL	Rs,Td,L	DP	Fill the table Td with Rs
108	T_SHF	IW,Ts,Td, L,OW	DP	Store the result into Td after shift left or right one entry of table Ts. The shift out data is send to OW and the shift in data is from IW
109	T_ROT	Ts,Td,L	DP	Store the result into Td after shift left or right one entry of table Ts.
110	QUEUE	IW,QU,L, Pr,OW	DP	Push IW into QUEUE or get the data from the QUEUE to OW (FIFO)
111	STACK	IW,ST,L, Pr,OW	DP	Push IW into STACK or get the data from the STACK to OW (LIFO)
112	BKCMP	Rs,Ts,L,D	DP	Compare the Rs value with the upper/lower limits of L, constructed by the table Ts, then store the comparison result of each pair into the relay designated by D (DRUM)
113	SORT	S,D,L	DP	Sorting the registers starting from S length L and store the sorted result to D

Matrix Instructions

120	MAND	Ma,Mb,Md,L	Р	Store the results of logic AND operation of Ma and Mb into Md			
121	MOR	Ma,Mb,Md,L	Р	Store the results of logic OR operation of Ma and Mb into Md			
122	MXOR	Ma,Mb,Md,L	Р	Store the results of logic Exclusive OR operation of Ma and Mb into Md			
123	MXNR	Ma,Mb,Md,L	Р	Store the results of logic Exclusive OR operation of Ma and Mb into Md			
124	MINV	Ms,Md ,L	Р	Store the results of inverse Ms into Md			
125	MCMP	Ma,Mb,L Pr	Р	Compare Ma and Mb to find the location with different value, then store the location into Pr			


FUN No.	Name	Operand	Derivative instruction	Function descriptions			
126	MBRD	Ms,L,Pr	Р	Read the bit status pointed by the Pr in Ms to the OTB output			
127	MBWR	Md,L,Pr	Р	Write the INB input status to the bits pointed by the Pr in Ms			
128	MBSHF	Ms,Md,L	Р	Store the results to Md after shift one bit of the Ms. Shifted out bit will appear at OTB and the shift in bits comes from INB			
129	MBROT	Ms,Md,L	Р	Store the results to Md after rotate one bit of the Ms. Rotated out bit will appear at OTB.			
130	MBCNT	Ms,L,D	Р	Calculate the total number of bits that are 0 or 1 in Ms, then store the results into D			

NC Positioning Instruction

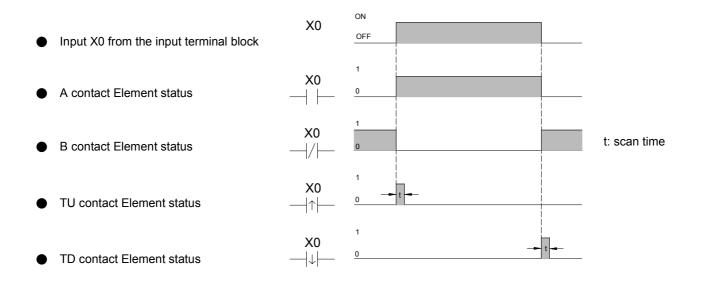
140	HSPSO	Ps,SR,WR		HSPSO instruction of NC positioning control
141	MPARA	Ps,SR	Р	Parameter setting instruction of NC positioning control
142	PSOFF	Ps	Р	Stop the pulse output of NC positioning control
143	PSCNV	Ps,D	Р	Convert the Ps positions of NC positioning to mm, Inch or Deg

Disable/Enable Control of Interrupt or Peripheral

145	EN	LBL	Р	Enable HSC, HST, external INT or peripheral operation
146	DIS	LBL	Р	Disable HSC, HST, external INT or peripheral operation

Chapter 4 Sequential Instructions

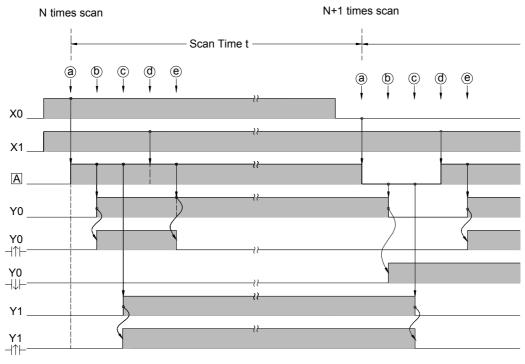
The sequential instructions of FBs-PLC shown in this chapter are also listed in section 3.1. Please refer to Chapter 1, "PLC Ladder diagram and the Coding rules of Mnemonic instruction", for the coding rules in applying those instructions. In this chapter, we only introduce the applicable operands, ranges and element characteristics, functionality.


Operand	Х	Y	М	SM	S	Т	С	TR	OPEN	SHORT
Ranges	X0	Y0	M0	M1912	S0	Т0	C0	TR0		
Instruction	 X255	 Y255	 M1911	 M2001	 S999	 T255	 C255	 TR39	—	—
ORG	0	\bigcirc	\bigcirc	\bigcirc	0	0	0		\bigcirc	\bigcirc
ORG NOT	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc			
ORG TU	0	\bigcirc	\bigcirc	○*	\bigcirc	0	\bigcirc			
ORG TD	0	\bigcirc	\bigcirc	○*	\bigcirc	\bigcirc	\bigcirc			
LD	0	0	0	0	\bigcirc	0	0	0	0	\bigcirc
LD NOT	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc			
LD TU	0	\bigcirc	\bigcirc	○*	\bigcirc	\bigcirc	\bigcirc			
LD TD	0	0	0	0*	\bigcirc	0	0			
AND	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc		0	\bigcirc
AND NOT	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc			
AND TU	\bigcirc	\bigcirc	\bigcirc	○*	0	0	\bigcirc			
AND TD	0	\bigcirc	\bigcirc	○*	\bigcirc	\bigcirc	\bigcirc			
OR	0	0	0	0	\bigcirc	0	0		0	\bigcirc
OR NOT	0	0	\bigcirc	\bigcirc	0	0	0			
OR TU	0	\bigcirc	\bigcirc	○*	\bigcirc	0	\bigcirc			
OR TD	0	0	\bigcirc	○*	0	0	0			
OUT		\bigcirc	\bigcirc	○*	\bigcirc			\bigcirc		
OUT NOT		0	\bigcirc	○*	0					
OUT L		\bigcirc								
ANDLD						_				
ORLD						_				
TU						_				
TD						_				
NOT						_				
SET		0	0	○*	\bigcirc					
RST		\bigcirc	0	○*	0					

4.1 Valid Operand of Sequential Instructions

%For the relays marked with a '♥' symbol in the special relay table (please refer to section 2.3) is write prohibited. In addition, TU and TD contacts are not supported for those relays as well. The operands marked with a '*' symbol in the table shown above should exclude those special relays.

4.2 Element Description


4.2.1 Characteristics of A,B,TU and TD Contacts

The waveform shown above reveals the function of A, B, TU and TD elements by exercising the external input X0 form OFF to ON then OFF.

- TU (Transition Up): This is the "Transition Up Contact". Only a rising edge (0→1) of the referenced signal will turn on this element for one scan time.
- TD (Transition Down): This is the "Transition Down Contact". Only a falling edge (1→0) of the referenced signal will turn on this element for one scan time.
- TU and TD contact will work normally as described above if the change of the status of the valid referenced operands listed in the "Valid Range of the Operand of Sequential instructions" table are not driven by the function instructions.
 - Remark: For TU(TD) elements which operand is of relay will turn on after the first time the corresponding relay get driven from 0 to 1(1 to 0). When the next time the corresponding relay get driven from 1 to 1(0 to 0) the TD(TU) element will turn OFF. Care should be taken while there is a multiple coil usage situation existed in the ladder program. This situation can be best illustrated at below. In the waveform we can see Y0 TU element only turn on between (b) and (e) time which only the Y0 TU elements existed between rung 1 and rung 2 can detect the Y0 rising edge, while other Y0 TU elements out side these two ladder rungs will never aware the occurrence of the rising edge. For the relays do not have the multiple coil usage in ladder program, The ON status of corresponding TU or TD element can be sustained for one scan time, but for relays which contrary to above, the turn on time will shorter than 1 scan time as illustrated at below.

Ladder Diagram	Mnemonic code
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ORG X 0

A: The internal accumulator of PLC

Besides the TU/TD instructions which can detect the status change of reference operand, FBs-PLC also provides the instructions to detect the change of node status (power flow). For details please refer the descriptions of FUN4 (DIFU) and FUN5 (DIFD) instructions at chapter 7.

4.2.2 OPEN and SHORT Contact

The status of OPEN and SHORT contact are fixed and can't be changed by any ladder instructions. Those two contacts are mainly used in the places of the Ladder Diagram where fixed contact statuses are required, such as the place where the input of an application instruction is used to select the mode. The sample program shown below gives an example of configuring an Up/Down counter (UDCTR) to an Up counter by using the SHORT contact.

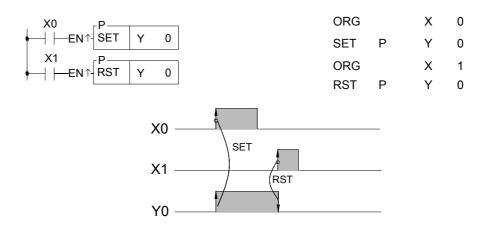

X0 7.UDCTR	ORG	Х	0
X0 → CV: R 0 CV: R 0	LD	SHORT	
	LD	Х	1
U/D-PV: R 10	FUN	7	
		CV: R	0
		PV: R	10

FUN7 is the UDCTR function. While rising edge of CK input occur, FUN7 will count up if the U/D status is 1 or count down if the U/D status is 0. The example shown above, U/D status is fixed at 1 since U/D is directly connected from the origin-line to a SHORT contact, therefore FUN7 becomes an Up counter. On the contrary, if the U/D input of FUN7 is connected with an OPEN contact from the origin-line, the FUN7 becomes a DOWN counter.

4.2.3 Output Coil and Inverse Output Coil

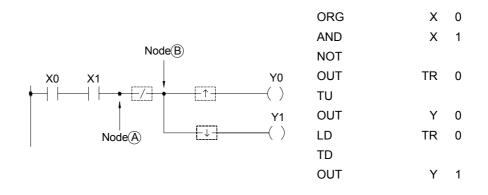
Output Coil writes the node status into an operand specified by the coil instruction. Invert Output Coil writes the complement status of node status into an operand specified by the coil instruction. The characteristics depicts at below.

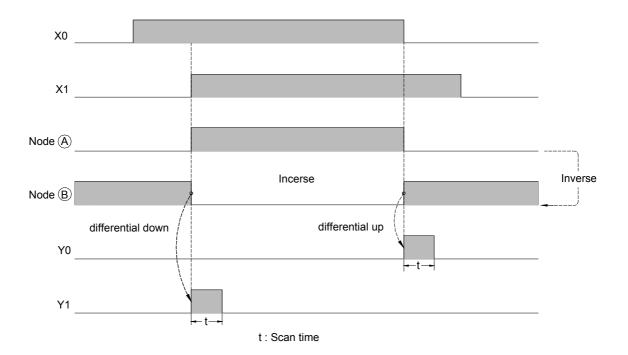
4.2.4 Retentive Output Coil


The coil element can be categorized into two types, namely Retentive and Non Retentive. For example, M0~M799 can be specified as the Retentive coils and M800~M1399 can be specified as the Non Retentive coils. One way to categorize the relay type is to divide the relays into groups. Though this method is simple but for the most applications the coils needed to be retentive may be in a random order. FBs-PLC allows user to set the retentive status of coil individually. When input the program with mnemonics instructions, if put an "L" after the OUT instruction can declare this specific relay as retentive output. This can be shown in the diagram below.

X0	X0	Y0	ORG	Х	0
		(L)	OR	Y	0
Y0			AND NOT	Х	1
•			OUT L	Y	0

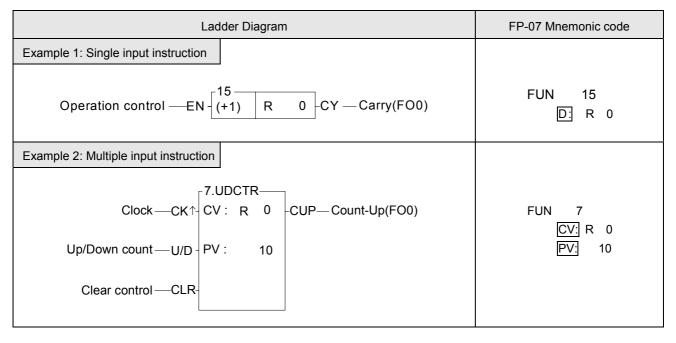
From the above example, if turn the X0 "ON" then "OFF", Y0 will keep at "ON". When change the PLC state from RUN to STOP then RUN or turn the power off then on, the Y0 still keep at ON state. But if use the OUT Y0 instruction instead of the OUT L Y0, Y0 status will be OFF.


4.2.5 Set Coil and Reset Coil


Set Coil writes 1 into an operand specified. Reset Coil writes 0 into an operand specified. The characteristics depicts at below.

4.3 Node Operation Instructions

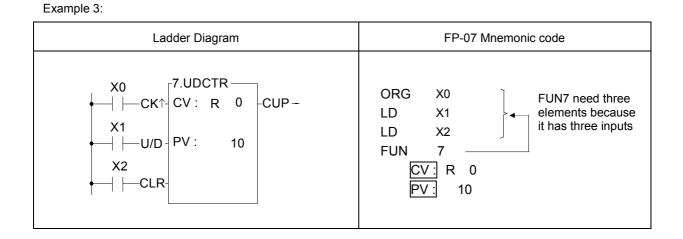
A node is the connection between elements in a ladder diagram consisting of sequential instruction elements (please refer to Section 1.2). There are four instructions dedicated for node status operation in FBs-PLC. The two instructions, "OUT TR" and "LD TR", have been discussed in Section 1.6 of this manual. Using the diagram below, the three node operation instructions NOT, TU and TD, are illustrated.



Chapter 5 Descriptions of Function Instructions

5.1 The Format of Function Instructions

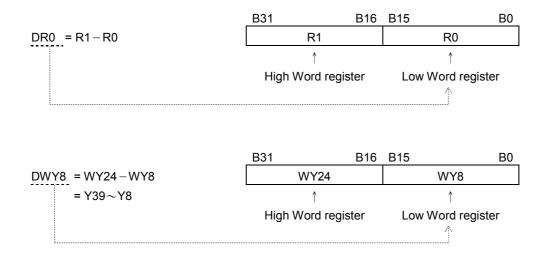
In this chapter we will introduce the function instructions of FBs-PLC in details. All the explanations for each function will be divided into four parts including input control, instruction number/name, operand and function output. If use the FP-07 to input the mnemonic instruction, except for the T, C, SET, RST and SFC instructions that can be entered directly by pressing a single key stroke on FP-07, other function instructions must be entered by key in the instruction number rather than the instruction name. An example is shown in below.


Remark : The words inside the hollow box in mnemonic code field are the prompting message from FP-07 such as D:, CV:, and Pr: and are not entered by the user.

5.1.1 Input Control

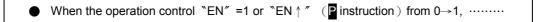
Except for the seven function instructions that do not have input control, the number of the input control of other FBs-PLC function instructions can be ranged from one to four. Execution of the instructions and operations is dependent on the input control signal or the combinations of the several input control signals. The ladder programming software for FACON PLC - Winprollader can help user to complete the complex design and document works. In the ladder program window we can see all the function instructions were displayed by blocks surrounded with abbreviated words for ease of comprehension, include inputs, outs, function name, and parameter names. As shown in example 2 above, the first input mark "CK \uparrow " indicates when the "CK \uparrow " input changes from 0 to 1 (rising edge) the counter will be increased or decreased by 1 (depending on the "U/D" status). The second input mark "U/D" with a status of 1 represents the word above slash ("U") and the status 0 represents the word under slash ("D"), that is second input "U/D" states =1, the counter will be increased by 1 when "CK \uparrow " input from 0 to 1, and when "U/D"=0, the counter will be decreased by 1. The third input mark "CLR" indicates when this input is 1, the counter will be cleared to 0. Chapter 8~9 give the descriptions of input control of each function instruction.

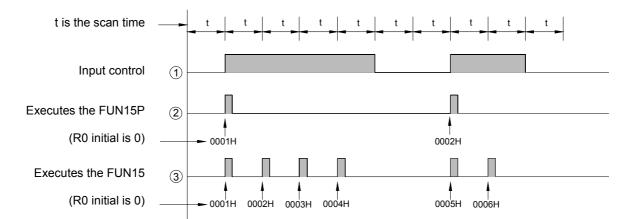
Remark: There are total of seven instructions whose input control should be directly connected to the origin-line those are MCE, SKPE, LBL, RTS, RTI, FOR, and NEXT. Please refer to chapter 6 and 7 for more detailed explanations.


All input controls of the function instructions should be connected by the corresponding elements, otherwise a syntax error will occur. As shown in example 3 below, the function instruction FUN7 has three inputs and three elements before FUN7. ORG X0, LD X1 and LD X2 corresponds to the first input CK \uparrow , second input U/D and third input CLR.

5.1.2 Instruction Number and Derivative Instructions

As mentioned before, except for the nine instructions that can be entered using the dedicated keys on the keyboard, other function instructions must be entered using the "instruction number". Follow the instruction number there are postfixes D, P, DP can be added which can derive three additional function instructions.


D: Indicates a Double Word (32-bit). The 16-bit word is the basic unit of the registers in FBs-PLC. The data length of R, T and C (except C200~C255) registers are 16-bit. If a register with 32-bit data length is required, then it is necessary to combine two consecutive 16-bit registers together such as R1-R0, R3-R2 etc. and those registers are represented by prefix a D letter before register name such as DR0 represents R1-R0 and DR2 represents R3-R2. If you enter DR0 or DWY8 in the monitor mode of FP-07, then a 32-bit long value (R1-R0 or WY24-WY8) will be displayed.


5-2

Remark: In order to differentiate between 16-bit and 32-bit instructions while using the ladder diagram and mnemonic code, we add the postfix letter D after the "Instruction number" to represent 32-bit instructions and the size of their operand are 32-bit as shown in example 4 on P.6-6. The instruction FUN 11D has a postfix letter D, therefore the source and destination operands need to prefix a letter D as well, such as the augend Sa : R0 is actually Sa=DR0=R1-R0 and Sb=DR2=R3-R2. Please also pay special attention to the length of the other operands except source and destination are only one word whether 16-bit or 32-bit instructions are used.

P: indicates the pulse mode instruction. The instruction will be executed when the status of input control changes from 0 to1 (rising edge). As shown in example 1, if a postfix letter P is added to the instruction (FUN 15P), the instruction FUN 15P will only be executed when the status of input control signal changes from 0 to 1. The execution of the instruction is in level mode if it does not have a P postfix, this means the instruction will be executed for every scan until the status of input control changes from 1 to 0. The pulse input is indicated by a symbol " ↑ ", such as CK ↑, EN ↑, TG ↑ etc.. In this operation manual, an example of the operation statement of a function instruction is shown below.

The first one indicates the execution requirement for non-P instruction (level mode) and the second one indicates the execution requirement for P instruction (pulse mode). The following waveform shows the result (R0) of FUN15 and FUN15P under the same input condition.

DP: Indicates the instruction is a 32-bit instruction operating with pulse mode.

Remark: P instruction is much more time saving than level instruction in program scanning, So user should use P instruction as much as possible.

5.1.3 Operand

The operand is used for data reference and storage. The data of source (S) operand are only for reference and will not be changed with the execution of the instruction. The destination (D) operand is used to store the result of operation and its data may be changed after the execution of the instruction. The following table illustrates the names and functions of FACON PLC function instruction's operands and types of contacts, coils, or registers that can be used as an operand.

■ The names and functions of the major operands:

Abbreviation	Name	Descriptions
s	Source	The data of source (S) operand are only for reading and reference and will not be changed with the execution of the instruction. If there are more than one source operands, each operand will be identified by the footnote such as Sa and Sb.
D	Destination	The destination (D) operand is used to store the result of operation. The original data will be changed after operation. Only the coils and registers which are not write prohibited can be the destination operand.
L	Length	Indicates the data size or the length of the table, usually are constants.
Ν	Number	A constant most often used as numbers and times. If there are more than one constant, each constant will be identified by the footnotes such as Na, Nb, Ns etc
Pr	Pointer	Used to point to a specific a block of data or a specific data or register in a table. Generally the Pr value can be varied, therefore cannot be constant or input register. (R3840~R3847)
CV	Current value	Used in T and C instruction to store the current value of T or C
PV	Set value	Used in T and C instructions for reference and comparison
т	Table	A combination of a set of consecutive registers forms a table. The basic operation units are word and double word. If there is more than one table, each table will be identified by footnotes such as Ta, Tb, Ts and Td etc
М	Matrix	A combination of a set of consecutive registers forms a matrix. The basic operation unit is bit. If there is more than one matrix, each matrix will be identified by footnotes such as Ma, Mb, Ms and Md etc

Besides the major operands mentioned above, there are other operands which are used for certain special purposes such as the operand Fr for frequency, ST for stack, QU for Queue etc.. Please refer to the instruction descriptions for more details.

The types of the operand and their range: The types of operand for the function instructions are discrete, register and constant.

a) Discrete operand :

There are total five function instructions that reference the discrete operand, namely SET, RST, DIFU, DIFD and TOGG. Those five instructions can only be used for operations of Y $\Delta\Delta$ (external output), M $\Delta\Delta\Delta$ (internal and special) and S $\Delta\Delta$ (step) relays. The table shown below indicates the operands and ranges of the five function instructions.

Range	Y	М	SM	S	
\backslash	Y0	M0	M1912	S0	
Ope- rand					
rand 🔪	Y255	M1911	M2001	S999	
D	0	0	O*	\bigcirc	

Symbol "O" indicates the D (Destination operand) can use this type of coils as operands. The "*" sign above the "O" shown in SM column indicates that should exclude the write prohibited relays as operands. Please refer to page 2-3 for introduction of the special relays.

b) Register operand :

The major operand for function instructions is register operand. There are two types of register operands: the native registers which already is of Words or Double Words data such as R, D, T, C. The other is derivative registers (WX, WY, WM, WS) which are formed by discrete bits. The types of registers that can be used as instruction operands and their ranges are all listed in the following table:

Range	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	К	XR
Ope-	WX0	WY0	WM0	WS0	Т0	C0	R0	R3840	R3904	R3968	R5000	D0	16/32-bit	V 、 Z
	WX240	WY240	WM1896	WS984	T255	C255	R3839	R3903	R3967	R4167	R8071	D4095	+/- number	P0~P9
S	0	0	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	•	\bigcirc	0	0
D		\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	O*	O*	\bigcirc		0
:														

The " \bigcirc " symbol in the table indicates can apply this kind of data as operand. The " \bigcirc *" symbol indicates can apply this kind of data except the write prohibited registers as operand. To learn more about write prohibited registers please refer to page 2-8 for introduction of the special register.

When R5000~R8071 are not set to be read only registers, can used as normal registers (read, and write)

- Remark 1: The registers with a prefix W, such as WX, WY, WM and WS are formed by 16 bits. For example, WX0 means the register is formed by X0(bit 0)~X15(bit 15). WY144 means the register is formed by Y144(bit 0)~Y159(bit 15). Please note that the discrete number must be the multiple of 8 such as 0, 8, 16, 24....
- Remark 2: The last register (Word) in a table can not be represented as a 32-bit operand in the function because 2 Words are required for a 32-bit operand.
- Remark 3: TMR (T0~T255) and CTR (C0~C255) are the registers of timers and counters respectively. Although they can be used as general registers, they also complicate the systems and make debugging more difficult. Therefore you should avoid writing anything into the TMR or CTR registers.
- Remark 4: T0~T255 and C0~C199 are 16-bit register. But C200~C255 are 32-bit register, therefore can't be used as 16-bit operands.
- Remark 5: Apart from being directly appointed by register's number (address) as the foregoing discussions, the register's operand in the range of R0~R8071 can be combined with pointer register V < Z or P0~P9 to make indirect addressing. Please refer to the example in the next section (Section 5.2) for the description of using pointer register (XR) to make indirect addressing.
 - c) Constant operands :

The range of 16-bit constant is between -32768~32767. The range of 32-bit constant is between -2147483648~2147483647. The constant for several function instructions can only be a positive constant. The range of 16-bit and 32-bit constants are listed in the table shown below.

Classification	Range
16-bit signed number	-32768~32767
16-bit un-signed number	0~32767
32-bit signed number	-2147483648~2147483647
32-bit un-signed number	0~2147483647
16/32-bit signed number	-32768~32767 or -2147483648~2147483647
16/32-bit un-signed number	0∼32767 or 0∼2147483647

It is possible that the length and size of a specific operand, such as L, bit size, N etc.., are different, and the differences are all directly marked at the operand column. Please refer to the explanations of function instructions.

5.1.4 Functions Output (FO)

The "Function Output" (FO) is used to indicate the operation result of the function instruction. Like control input, each function outputs shown in the screen of programming software are all attached with a word which comes from the abbreviation of the output functionality. Such as CY derived from CarrY. The maximum number of function outputs is 4 and those are denoted as FO0, FO1, FO2, FO3 respectively. The FO status must be taken out by FO instruction (there is a FO special key on FP-07 program writing device). The unused FO may be left without connecting to any elements, such as FO1 (CY) shown in Example 4 below.

Examp	le	4	:	
•				

Ladder Diagram	Mnemonic Codes
X0 = 11D.(+) = Y0 Sa: R 0 = D=0 () Sb: R 2 D: R 4 = CY- Y1 BR=()	ORG X 0 FUN 11D Sa: R 0 Sb: R 2 D: R 4 FO 0 OUT Y 0 FO 2 OUT Y 1

When M1919=0, the FO status will only be updated if the instruction is executed. It will keep the same status until a new FO status is generated after the instruction is executed again (memory keeping).

When M1919=1, the FO status will be reset to 0 (no memory keeping) if the instruction is not executed.

5.2 Use Index Register(XR) for Indirect Addressing

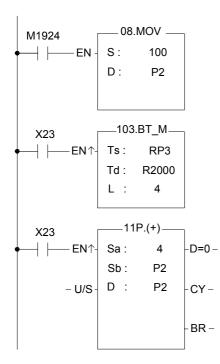
In the FBs-PLC function instructions, there are some operands that can be combined with pointer register (V \times Z \times P0~P9) to make indirect addressing (will be shown in the operand table if it applicable). However, only the registers in the range R0~R8071 can be combined with an pointer register to perform indirect addressing (other operands such as discrete, constant and D0~D3071 cannot be used for indirect addressing).

There are twelve pointer registers XR (V \cdot Z \cdot P0~P9). The V register in fact is the R4164 of special registers (R3840 \sim R4167), the Z register is the R4165 and the P0~P9 register is the (D4080~D4089). The actual addressed register by index addressing is just offset the original operand with the content of the index register.

Original Operand ↓		nter gister	Actual Operand ↓
_ R100	V	(lf V=50)	= R150
100	+	50 —	↑
		(If V=100)	= R200
		•	•
		•	•
		•	•
		•	•

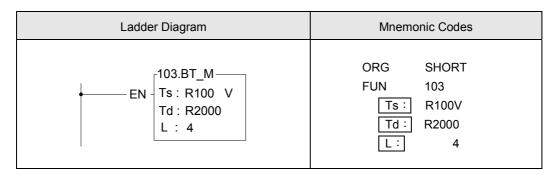
As shown in the above diagram, you only need to change the V value to change the operand address. After combining the index addressing with the FBs-PLC function instructions, a powerful and highly efficient control application can be achieved by using very simple instructions. Using the program shown in the diagram below as an example, you only need to use a block move instruction (BT_M) to achieve a dynamic block data display, such as a parking management system.

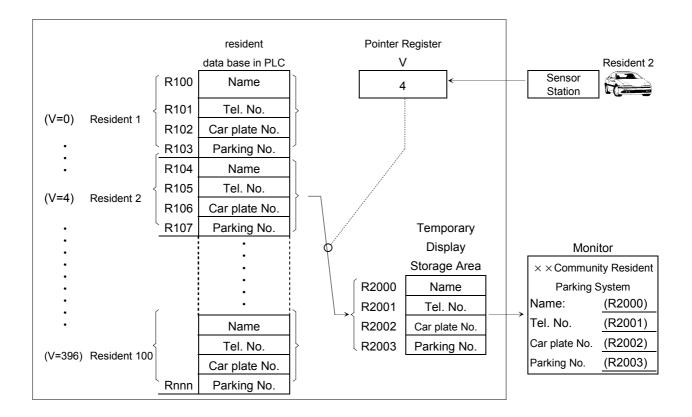
Index Register(P0~P9) Introduction


In indirect addressing application, Rxxxx register can combine V \cdot Z & P0 \sim P9 for index addressing; Dxxxx register can't combine V \cdot Z for index addressing, but P0 \sim P9 are allowed.

When V \sc Z index register being combined with the Rxxxx register,

for example, R0 with V \cdot Z, the instruction format is R0V(where V=100, it means R100) or R0Z(where Z=500, it means R500); when P0 \sim P9 index register being combined with the Rxxxx register, the instruction format is RPn (n=0 \sim 9) or RPmPn (m,n=0 \sim 9), for example RP5 (where P5=100, it means R100) or RP0P1(where P0= 100, P1=50, it means 150).


When P0 \sim P9 index register being combined with the Dxxxx register, the instruction format is DPn (n=0 \sim 9) or DPmPn (m,n=0 \sim 9), for example DP3 (where P3=10, it means D10) or DP4P5 (where P4=100, P5=1, it means D101).


It can combine both P0∼P9 index register, for example P2=20, P3=30, when Rxxxx or Dxxxx register combines both index register, RP2P3 will point to R50, DP2P3 will point to D50, it means the summation of both index register for indirect addressing.

- 1. Index register P2=100 while power up or first run.
- When X23 changes from 0→1, FUN103 will perform the table movement, the source starts from R100 (P2=100), the destination starts from R2000, the amount is 4. Coping the content of R100~R103 for R2000~R2003 at first execution, coping the content of R104~R107 for R2000~R2003 at second execution...
- 3. Increasing the P2 index register by 4 to point to next 4

Indirect addressing program example

Description Suppose that there are 100 resident parking spaces available in a parking management system for community residents. Each resident has a set of basic information including name, telephone number, number plate and parking number, that occupy four consecutive PLC registers as shown in the above diagram. A total of 400 registers (R100~R499) are occupied. Each resident is given a card with a unique card number (the number is 0 for resident 1, 4 for resident 2 etc..) for the sensing pass of the main entrance and parking lot. The card number will be sensed by the PLC and stored into the pointer register "V". The attendant's monitor (LCD or CRT) will only display the data grasped by R2001~R2003 in the PLC. For example, the card of residence 2 with the card number 4 is sensed, then the register V=4 and the PLC will immediately move the data in R104~R107 to the temporary display storage area (R2000~ R2003). Hence, the attendant's monitor can display the data of residence 2 as soon as its card is sensed.

Marning

- 1. Although using pointer register for indirect addressing application is powerful and flexible, but changing the V and Z values freely and carelessly may cause great damages with erroneous writing to the normal data areas. The user should take special caution during operation.
- 2. In the data register range that can be used for indirect addressing application (R0~R8071), the 328 registers R3840~R4167 (i.e. IR, OR and SR) are important registers reserved for system or I/O usage. Writing at-will to these registers may cause system or I/O errors and may result in a major disaster. Due to the fact that users may not easily detect or control the flexible register address changes made by the V and Z values, FBs-PLC will automatically check if the destination address is in the R3840~R4067 range. If it is, the write operation will not be executed and the M1969 flag "Illegal write of Indirect addressing" will be set as 1. In case it is necessary to write to the registers R3840~R4067, please use the direct addressing.

5.3 Numbering System

5.3.1 Binary Code and Related Terminologies

Binary is the basic numbering system of digital computer. Since the PLC operates with discrete ON/OFF values, it is natural to use binary codes. The following terminologies should be fully understood before go to further topic of numbering system.

- Bit: (Abbreviated as B, such as B0, B1, and so on) It is the most basic unit of binary value. The status of bit is either "1" or "0".
- Nibble: (Abbreviated as NB, such as NB0, NB1, and so on) It is formed by four consecutive bits (e.g. B3~B0) and can be used to represent a decimal number 0~9 or a hexadecimal number 0~F.
- Byte: (Abbreviated as BY, such as BY0, BY1, and so on) It is formed by two consecutive nibbles (or 8 bits, such as B7~B0) and can be used to represent a 2-digit hexadecimal number 00~FF.
- Word: (Abbreviated as W, such as W0, W1, and so on) It is formed by two consecutive bytes (or 16 bits, such as B15 ~B0) and can be used to represent a 4-digit hexadecimal number 0000~FFFF.
- Double Word: (Abbreviated as DW, such as DW0, DW1, and so on) It is formed by two consecutive words (or 32 bits, such as B31~B0) and can be used to represent an 8-digit hexadecimal number 00000000~FFFFFFF.

DW								
/	W1	W	/0	Ğ←Word				
ВҮЗ	BY2	BY1	BY0	⊂Byte				
NB7 NB6	NB5 NB4	NB3 NB2	NB1 NB0	Nibble				
B31 B30 B29 B28 B27 B26 B25	324 B23 B22 B21 B20 B19 B18 B17 B16 I	B15 B14 B13 B12 B11 B10 B9 B8	B7 B6 B5 B4 B3 B2 B1 B0) ←Bit				

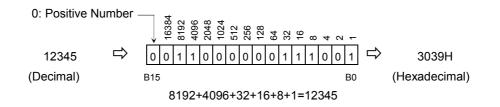
• Floating Point Number: It is also formed by two consecutive words. The Floating Point Number can expressed the maximum range is $\pm (1.8*10^{-38} \sim 3.4*10^{38})$. For the details, Please refer to section 5.3.6 for explanation.

5.3.2 The Coding of Numeric Numbers for FBs-PLC

FBs-PLC use the binary numbering system for its internal operations that is the data of external BCD inputs must be converted to binary number before the PLC can process. As we know the binary code is very difficult to read and input to the PLC for human, therefore FP-07 and WinProladder use the decimal unit or hexadecimal unit to input or to display the data. But in reality, all the operations taking place in the PLC are performed with binary code.

Remark: If you input or display the data without going through the FP-07 or WinProladder (For instance, input data into or take out data from PLC through the I/O terminals using thumb wheel switch or seven segment display), then you have to use the Ladder program to perform the Decimal to Binary conversion. This enables you to input and display data without using the FP-07 and WinProladder. Please refer to FUN20(BIN→BCD) and FUN21(BCD→BIN).

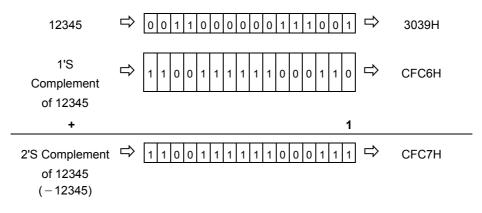
5.3.3 Range of Numeric Value


As we have mentioned before that FBs-PLC uses binary numbers for its internal operations. 16-bit,32-bit and Floating Point Number are three different numeric data of FBs-PLC. The ranges of the three numeric values are shown below.

16-bit	-32768~32767
32-bit	$-2147483648 \sim 2147483647$
Floating point number	±(1.8*10 ⁻³⁸ ~3.4*10 ³⁸)

5.3.4 Representation of Numeric Value (Beginners can skip this section)

The representation and specification of 16-bit and 32-bit numeric values are provided below to enable the user to further understand the numeric value operation for more complicated applications.


The most significant bits MSB of 16-bits and 32-bits (B15 for 16-bit and B31 for 32-bit) are used to identify positive and negative numbers (0: positive and 1: negative). The remaining bits (B14~B0 or B30~B0) represent the magnitude of the number. The following example uses 16-bit for further explanations. Please note that everything also applies to 32-bit numbers and the only difference is the length.

In the above example, regardless of its size (16-bit or 32-bit), and starting with the least significant bit LSB (B0). B0 is 1, B1 is 2, B2 is 4, B3 is 8, and so on. The number represented by the neighboring left bit will double its value (1, 2, 4, 8, 16, and so on) and the value is the sum of the numbers represented by the bits that are equal to 1.

5.3.5 Representation of Negative Number (Beginners should skip this section)

As prior discussion, when the MSB is 1, the number will be a negative number. The FBs-PLC negative numbers are represented by 2'S Complement, i.e. to invert all the bits ($B15 \sim B0$ or $B31 \sim B0$) of its equivalent positive number (The so-called 1'S Complement is to change the bits equal 1 to 0 and the bits equal 0 to 1) then add 1. In the above example, the positive number is 12345. The calculation of its 2'S Complement (i.e. –12345) is described below:

5.3.6 Representation of Floating Point Number (Beginners should skip this section)

The format of floating point number of Fatek-PLC follows the IEEE-754 standard, which use a double word for storage and can be expressed as follow:

Sign	Exponent	Mantissa						
b ₂₂	$b_{30} \sim b_{23}$	$b_{22} \sim b_0$						
1 bit	8 bits	23 bits						
	32 bits							

floating point number = sign + Exponent + Mantissa

- ▲ If the sign bit is 0 the number is positive, if the sign bit is 1 the number is negative.
- ▲ The exponent is denoted as 8-bit excess 127.

▲ The mantissa is 23-bit with radix 2. A normalized mantissa always starts with a bit 1, followed by the radix point, followed by the rest of the mantissa. The leading bit 1, which is always present in a normalized mantissa, is implicit and is not represented.

The Conversion rule of Integer to floating is :

$$N = (-1)^{S} * 2^{(E-127)} * (1.M) \qquad 0 < E < 255$$

For example :

(1). $1 = (-1)^{0} * 2^{(01111111)} * (1.000 \dots 0)$

The sign is represented by 0, the exponent's code in excess 127 is 127 = 01111111, and the significant bit is 1, resulting in the mantissa being all O's. The simple precision IEEE 754 representation of 1, is thus :

Code(1) =	0	0	1	1	1	1	1	1	1	0	0	0	0	0.	•••••	·0	0	0
	s	е	е	е	е	е	е	е	е	m	m	m	m	m	m·····	m	m	m

= 3F800000H

(2). $0.5 = (-1)^{0} * 2^{(01111110)} * (1.000 \dots 0)$

The sign is represented by 0, the exponent's code in excess 127 is 126 - 127 = 0111110, and the significant bit is 1, resulting in the mantissa being all O's. The simple precision IEEE 754 representation of 0.5, is thus :

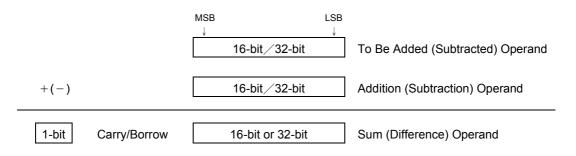
Code(0.5) =	0	0	1	1	1	1	1	1	0	0	0	0	0	0.	•••••	0	0	0
	s	е	е	е	е	е	е	е	е	m	m	m	m	m	m·····	m	m	m

= 3F000000H

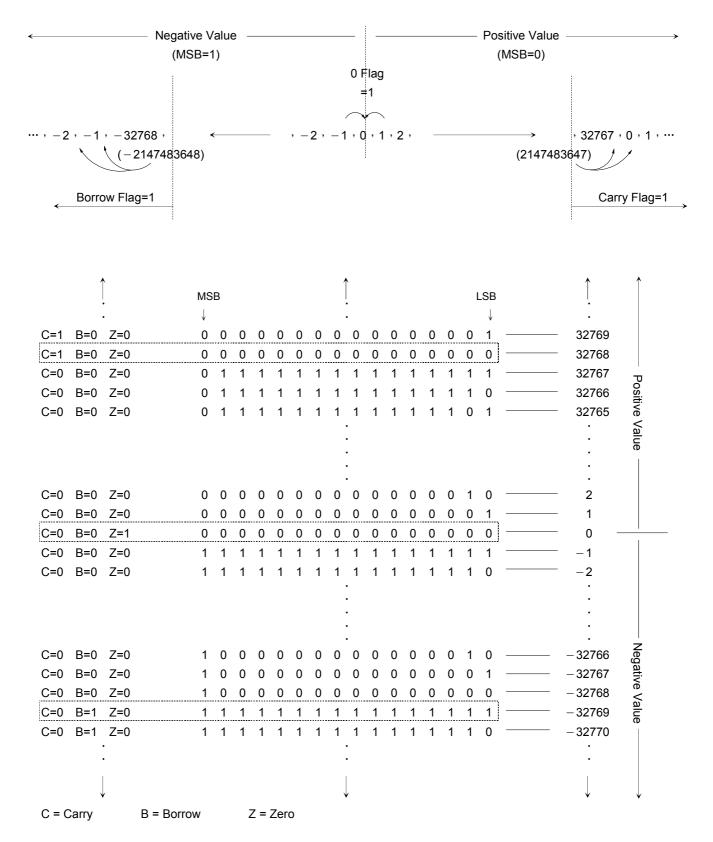
(3). $-500.125 = (-1)^{1} * 2^{(10000111)} * (1.11110100001000000000)$

The sign is represented by 0, the exponent's code in excess 127 is 135 - 127 = 10000111, and the significant bit is 1, resulting in the mantissa is 111101000010000000000. The simple precision IEEE 754 representation of -500.125, is thus :

= C3FA1000H

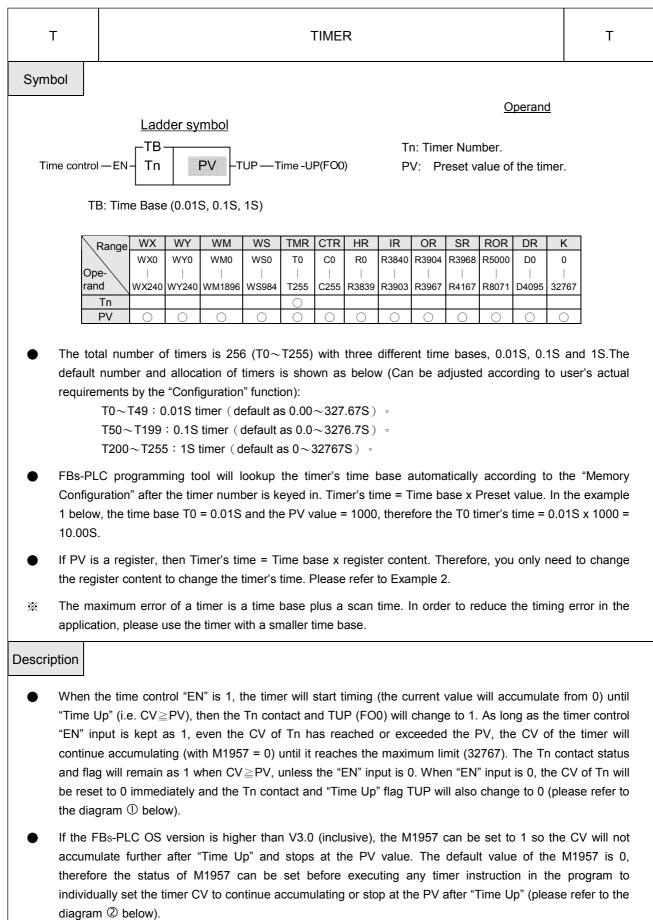

5.4 Overflow and Underflow of Increment (+1) or Decrement (-1) (Beginners should skip this section)

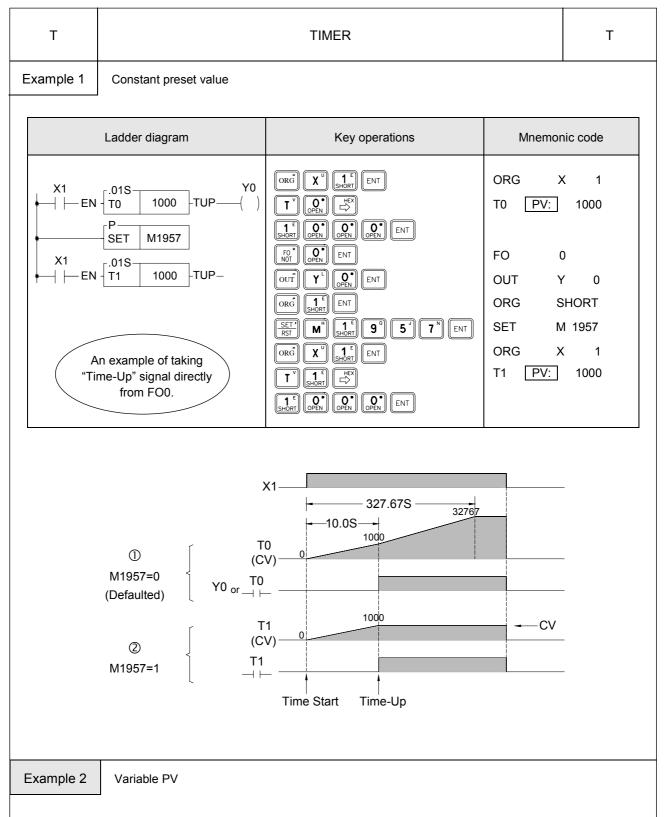
The maximum positive value that can be represented by 16-bit and 32-bit operands are 32767 and 2147483647, respectively. While the minimum negative values that can be represented by 16-bit and 32-bit operands are -32768 and -2147483648, respectively. When increase or decrease an operand (e.g. when Up/Down Count of a counter or the register value is +1 or -1), and the result exceeds the value of the positive limit of the operand, then "Overflow" (OVF) occurs. This will cause the value to cycle to its negative limit (e.g. add 1 to the 16-bit positive limit 32767 will change it to -32768). If the result is smaller than the negative limit of the operand, then "Underflow" (UDF) occurs. This will cause the value to cycle to its negative limit of the operand, then "Underflow" (UDF) occurs. This will cause the value to cycle to its positive limit (e.g. deducting 1 from the negative limit -32768 will change it to 32767) as shown in the table below. The flag output of overflow or underflow exists in the FO of FBs-PLC and can be used in cascaded instructions to obtain over 16-bit or 32-bit operation results.


Increase (Decrease) Result Overflow/ Underflow	16-bit Operand	32-bit Operand				
Increase	OVF=1 OVF=1 -32767 -32767 32766 32765	OVF=1 -2147483646 -2147483647 -2147483648 2147483647 2147483646				
Decrease	UDF=1 (-32767 -32768 32767 32766 32765	UDF=1 2147483647 2147483648 2147483647 2147483646 2147483645				

5.5 Carry and Borrow in Addition/Subtraction

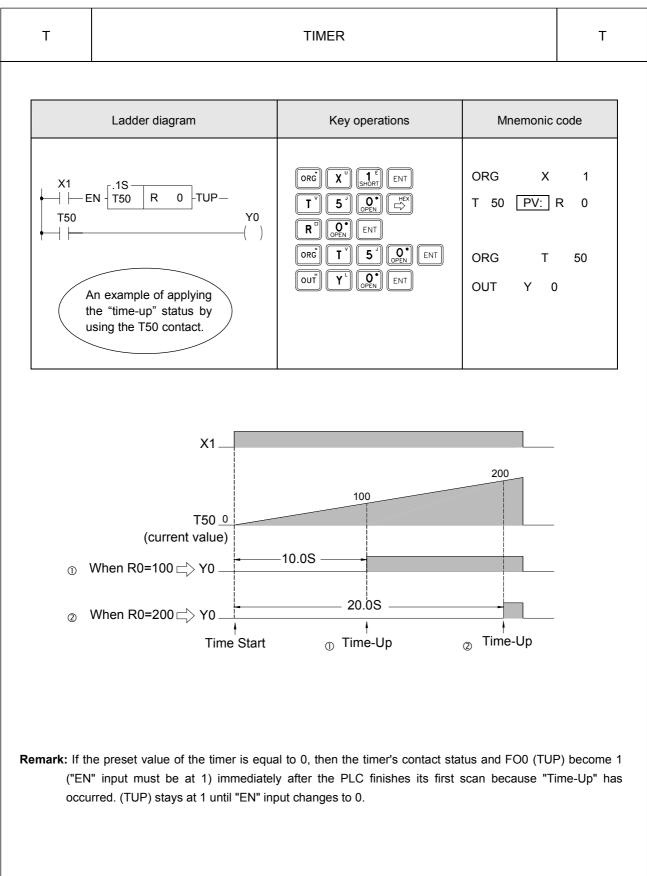
Overflow/Underflow takes place when the operation of increment/decrement causes the value of the operand to exceed the positive/negative limit that can be represented in the PLC, consequently a flag of overflow/underflow is introduced. Carry/Borrow flag is different from overflow/underflow. At first, there must be two operands making addition (subtraction) where a sum (difference) and a flag of carry/borrow will be obtained. Since the number of bits of the numbers to be added (subtracted), to add (subtract) and of sum (difference) are the same (either 16-bit or 32-bit), the result of addition (subtraction) may cause the value of sum (difference) to exceed 16-bit or 32-bit. Therefore, it is necessary to use carry/borrow flag to be in coordination with the sum (difference) operand to represent the actual value. The carry flag is set when the addition (subtraction) result exceeds the positive limit (32767 or 2147483647) of the sum (difference) operand. The borrow flag is set when addition (subtraction) result exceeds the negative limit (-32768 or -2147483648) of the sum (difference) operand. Hence, the actual result after addition (subtraction) is equal to the carry/borrow plus the value of the sum (difference) operand. The FO of FBs-PLC addition/subtraction instruction has both carry and borrow flag outputs for obtaining the actual result.

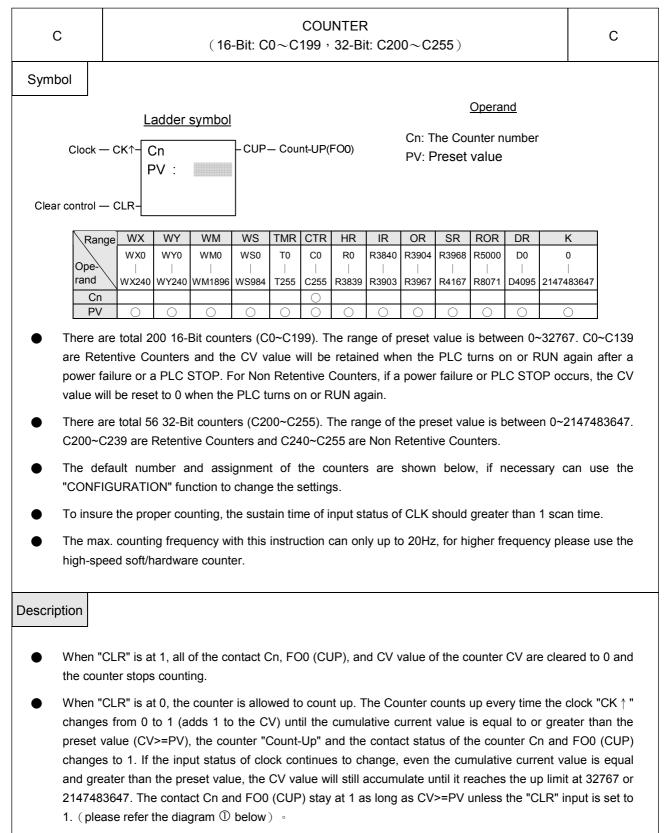

While all FBs-PLC numerical operations use 2'S Complement, the representation of the negative value of the sum (difference) obtained from addition (subtraction) is different from the usual negative number representation. When the operation result is a negative value, 0 can never appear in the MSB of the sum (difference) operand. The carry flag represents the positive value 32768 (2147483648) and the borrow flag represents the negative value -32768 (-2147483648).

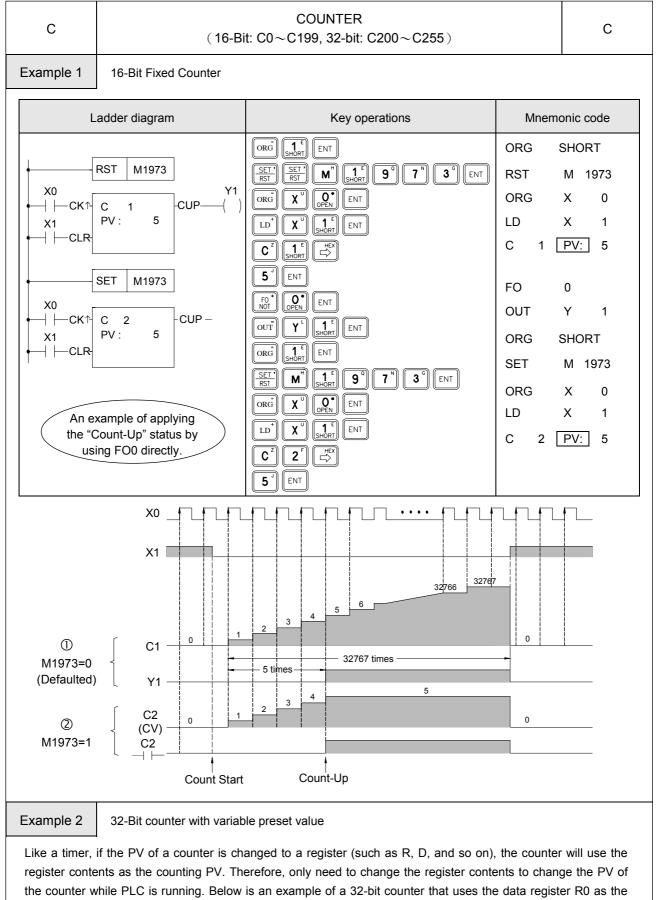

Chapter 6 Basic Function Instruction

		Т	 6-2
		С	 6-5
		SET	 6-8
		RST	 6-10
0	:	MC	 6-12
1	:	MCE	 6-14
2	:	SKP	 6-15
3	:	SKPE	 6-17
4	:	DIFU	 6-18
5	:	DIFD	 6-19
6	:	BSHF	 6-20
7	:	UDCTR	 6-21
8	:	MOV	 6-23
9	:	MOV/	 6-24
10	:	TOGG	 6-25
11	:	(+)	 6-26
12	:	(-)	 6-27
13	:	(*)	 6-28
14	:	(⁄)	 6-30
15	:	(+1)	 6-32
16	:	(-1)	 6-33
17	:	CMP	 6-34
18	:	AND	 6-35
19	:	OR	 6-36
20	:	→BCD	 6-37
21	:	→BIN	 6-38

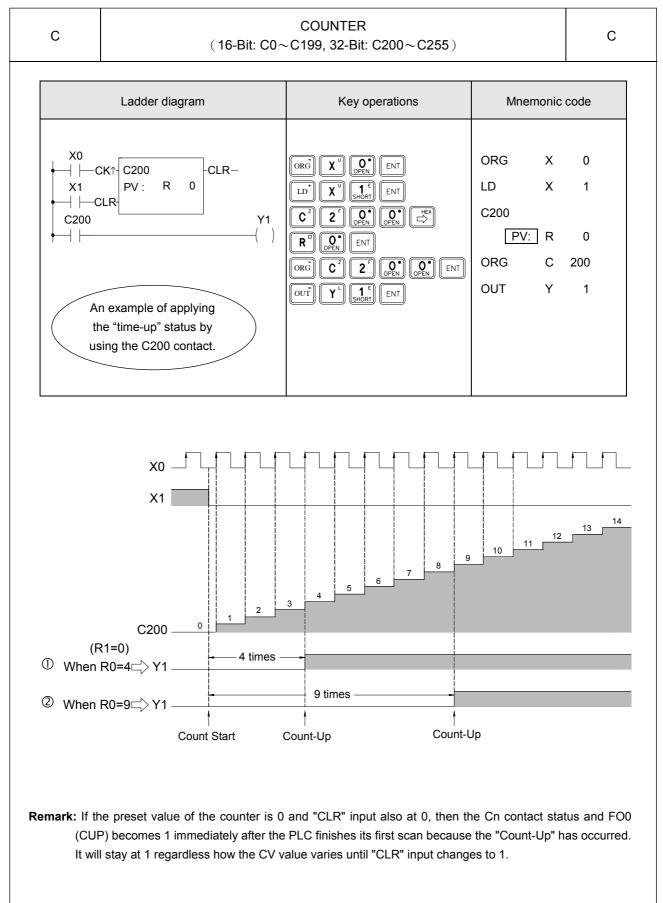
Basic Function Instruction

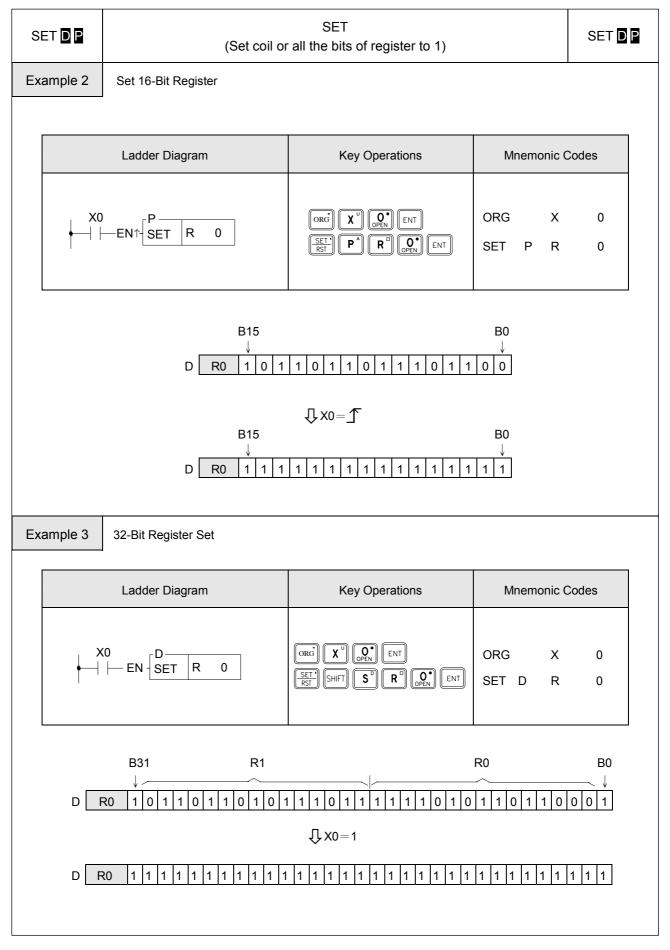


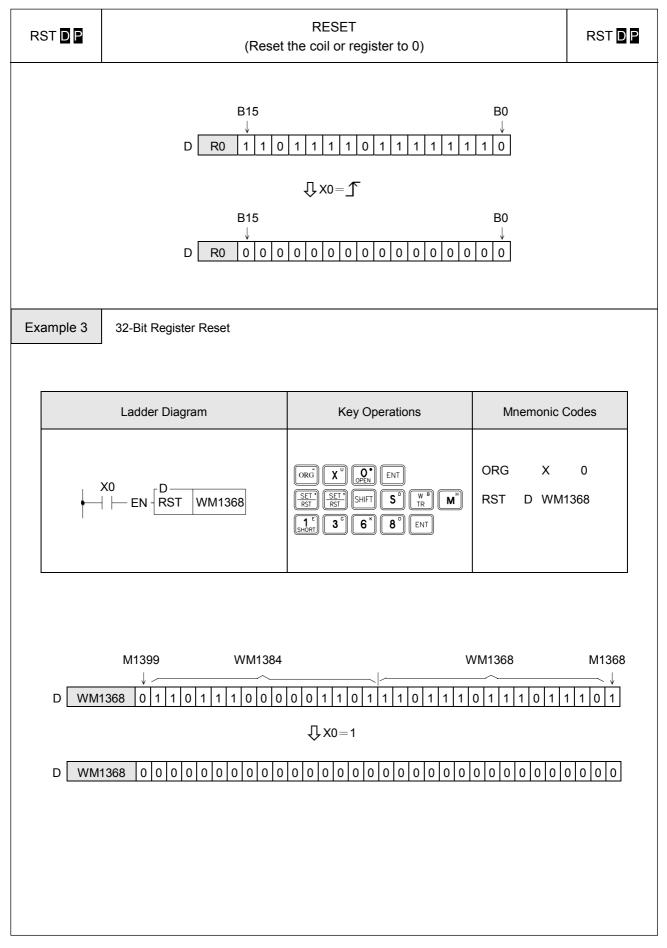

Basic Function Instruction

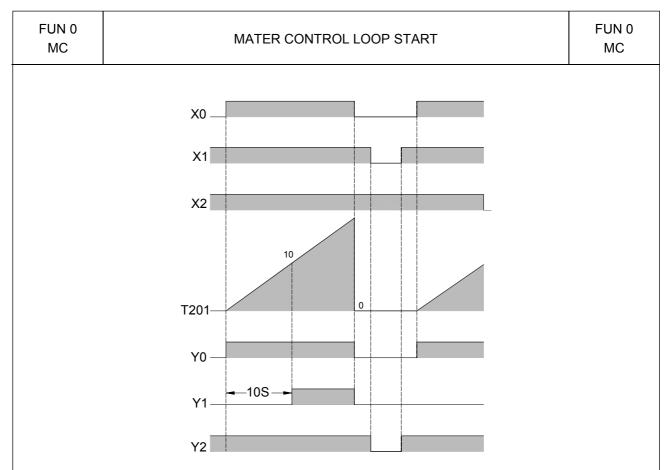

The preset value (PV) shown in example 1 is a constant which is equal to 1000. This value is fixed and can not be changed once programmed. In many circumstances, the preset time of the timers needs to be varied while PLC running. In order to change the preset time of a timer, can first use a register as the PV operand (R or WX, WY...) and then the preset time can be varied by changing the register content. As shown in this example, if set R0 to 100, then T becomes a 10S Timer, and hence if set R0 to 200, then T becomes a 20S Timer.

Basic Function Instruction



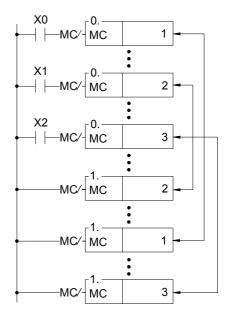

If the FBs-PLC OS version is higher than V3.0 (inclusive), the M1973 can set to 1 so the CV will not accumulate further after "Count Up" and stops at the PV. M1973 default value is 0, therefore the status of M1973 can be set before executing any counter instruction in the program to individually set the counter CV to continue accumulating or stops at the PV after "Count Up" (please refer to the diagram ⁽²⁾ below).


PV (in fact it is the 32-bit PV formed by R1 and R0).


SETDP		(Set coil o		ET bits of ı	egist	er to	1)				s	ET D P
Symbol	control — E N ↑-	Ladder s DP SET	symbol D			D		ination numbe	to be			gister)	
Op rar	e- d Y0 M Y255 M1		S WY S0 WY0 - - S999 WY240 O O	WM WM0 WM1896	WS WS0 WS984	TMR T0 T255 〇	CTR C0 - C255 O	HR R0 R38339 	OR R3904 R3967 			DR D0 - D4095 〇	
	● When the set control "EN" =1 or "EN ↑ "(instruction) is from 0 to 1, sets the bit of a coil or all bits of a register to 1.												
	Ladder D	Diagram			Key O	perati	ons			Mner	nonic	Codes	6
	X0 EN↑[X1 EN↑[P SET Y P RST Y		SET ' RST	X ^U O [•] P ^A Y ^L X ^U 1 ^E SHORT P ^{ETT} P ^A	ENT OPEN ENT	ENT OPEN	ENT	SE ⁻ OR	G	X Y X Y Y	(1	
		X0 - X1 - Y0 -	\ 	SET	RST								

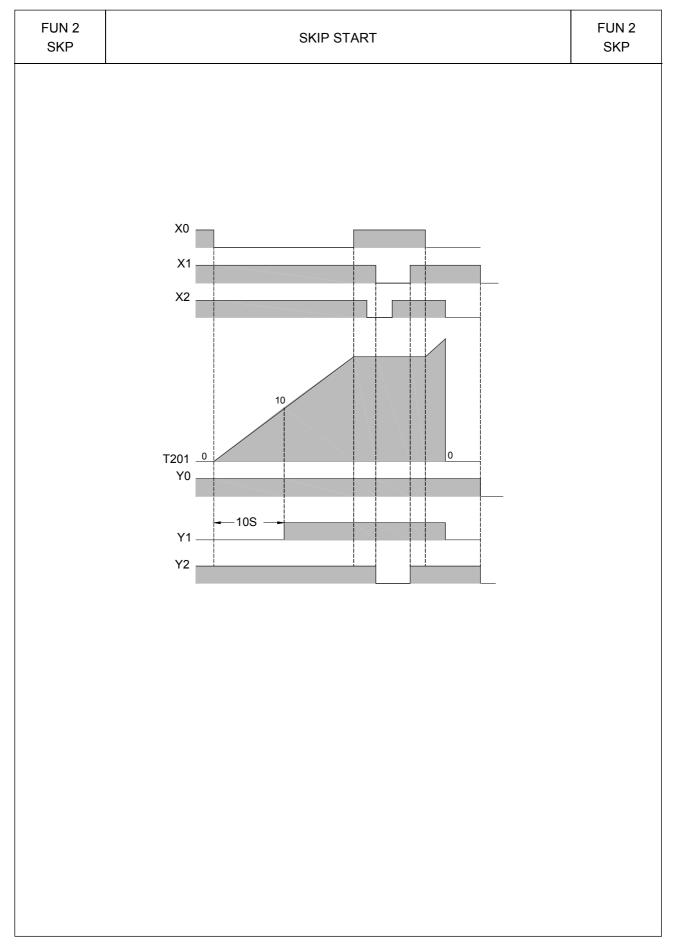
RS	ST D	Ρ				(R	eset th	RE ne coil c	ESET	egiste	r to 0))				RST	DP
Syr	mbol																
					Ladd	er svi	nbol							<u>Opera</u>	and		
										0	D: Des	tinatio	n to be	reset			
	R	eset co	ntrol — E	:N↑- F	RST		כ						er of a		a regi	ster)	
		Ran	ge Y	М	SM	S	WY	WM	WS	TMR	CTR	HR	OR	SR	ROR	DR	
	Y0 M0 M1912 S0 WY0 WM0 WS0 T0 C0 R0 R3904 R3968 R500													R5000	D0		
	rand Y255 M1911 M2001 S999 WY240 WM1896 WS984 T255 C255 R3839 R3967 R4167 R807													R8071	D4095		
												1		1	1	11	
Desc	criptio	on															
	• When the reset control "EN" =1 or "EN \uparrow " (P instruction) from 0 to 1, resets the coil or register to 0.																
	vvne	n the i	eset cor		IN = 1 0		N (Instruc		om o ic) I, res	sets th	e con c	britegi	ster to	0.	
		o 1	Oinala														
EXe	ample	eı	Single	e Coil F	keset												
Ple	ease	refer t	o examp	le 1 fo	r the Sl	ET ins	structio	n shown	in page	e 6-8.							
Exa	ample	e 2	16-Bit	t Regis	ter Res	set											
_																	
			Ladd	er Dia	gram				Key (Operat	ions			Mnen	nonic (Codes	
				P				ORG	X ^U OPE		-		OR	G	х	0	
	← EN↑ RST R 0																

FUN 0 MC	MATER	MATER CONTROL LOOP START FUN 0 MC											
Symbol	Ladder symbol Operand Master control – EN/ – MC N Master control – EN/ – MC N												
corres They n MC N ● When exist. ● When and M	bond to a Master Control End in nust always be used in pairs and instruction. the Master Control input "EN/" is the Master Control input "EN/" is CE N is called the Master Contr	I=0~127). Every Master Control s istruction, MCE N, which has the you should also make sure that the 1, then this MC N instruction will n 0, the master control loop is active ol active loop area. All the status leared to 0. Other instructions will no	same loop numbe MCE N instruction ot be executed, a e, the area betwee of OUT coils or T	er as MC N. n is after the s it does not en the MC N									
	Ladder Diagram	Key Operations	Mnemonic (Codes									
	EN/-[0 MC 1 Y0	ORG X O ENT FUN OPEN ENT SHORT ENT	ORG X FUN 0 N: 1	0									
X2	[1S]		ORG X	1									
	T201 10 Y1	OUT Y OFEN ENT	OUT Y ORG X	0 2									
	()	$\begin{array}{c c} T \\ \hline T \\ SHORT \end{array} \begin{array}{c} T \\ SHORT \end{array} \end{array}$	T201 PV :	10									
X1	MCE 1	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array}\end{array}\end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} $	ORG T	201									
│ │ ∲─┤┝─	()	OUT YL SHORT ENT	OUT Y	1									
			FUN 1										
			N: 1 ORG X	1									
		$\begin{array}{c c} ORG & X^{U} & \underline{1}^{L} & ENT \\ \hline OUT & Y^{L} & 2^{T} & ENT \\ \end{array}$	OUT Y	2									

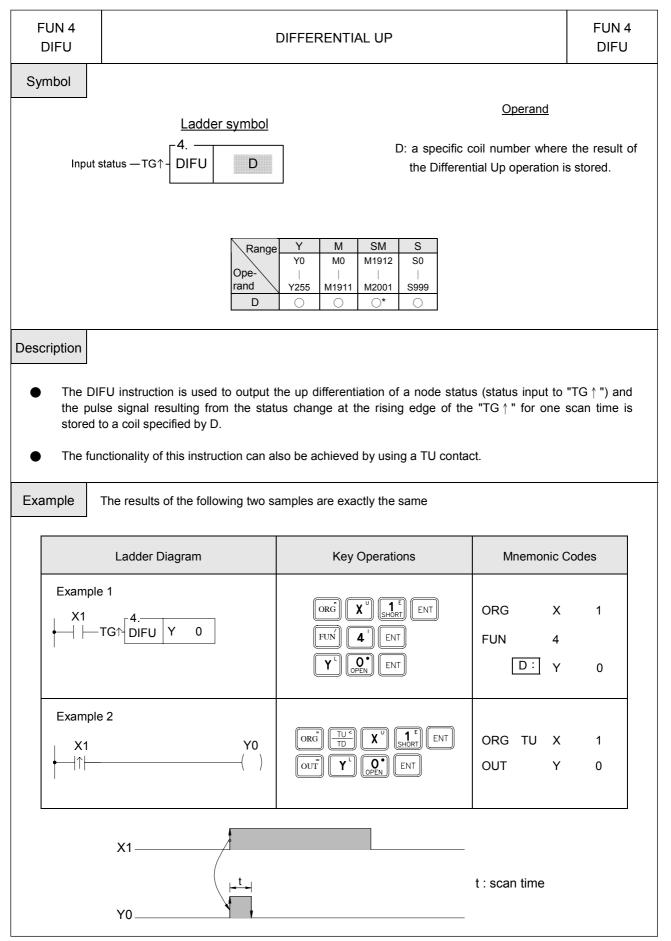


Remark1:MC/MCE instructions can be used in nesting or interleaving as shown to the right:

Remark2: • When M1918=0 and the master input changes from $0 \rightarrow 1$, and if pulse type function instructions exist in the master control loop, then these instructions will have a chance to be executed only once (when the first time the master control input changes from $0 \rightarrow 1$). Afterwards, no matter how many times the master control input changes from $0 \rightarrow 1$, the pulse type function instructions will not be executed again.


• When M1918=1 and the master control input changes from $0 \rightarrow 1$, and if pulse type function instructions exist in the master control loop, then each time the master control input changes from $0\rightarrow$ 1 the pulse type function instructions in the master control loop will be executed as long as the action conditions are satisfied.

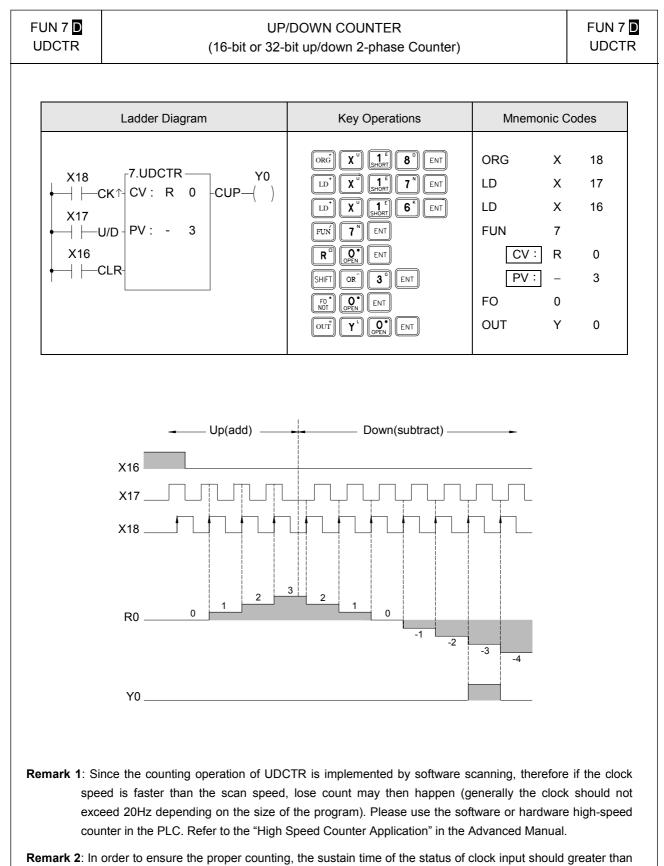
• When a counting instruction exists in the master control loop, set M1918 to 0 can avoid counting error. • When the pulse type function instructions in the master control loop must act upon the $0\rightarrow 1$ input change by the master control, the flag M1918 should be set to 1.



FUN 1 MCE	MASTER CONTROL LOOP END FUN 1 MCE										
Symbol	Ladder symbol N: Master Control End number (can not be used repeatedly. 1.	(N=0~127) N									
and you instruct will be as MC MCE in instruct will be	ACE N must correspond to a Master Control Start instruction. They must always be use a should also make sure that the MCE N instruction is after the MC N instruction. After on has been executed, all output coil status and timers will be cleared to 0 and no other executed. The program execution will resume until a MCE instruction which has the sam N instruction appears. Struction does not require an input control because the instruction itself forms a network ons can not connect to it. If the MC instruction has been executed then the master contr completed when the execution of the program reaches the MCE instruction. If MC N insteen executed then the MCE instruction will do nothing.	er the MC N instructions ie N number which other rol operation									
Description Please	refer to the example and explanations for MC instruction.										

FUN 2 SKP		SKIP START FUN 2 SKP											
Description There a end ins and you	truction, SKPE N, which has the sa J should also make sure that the Sk		nust always be us I instruction.	nd to a skip									
active I	oop area will be skipped, that is al	ge between the SKP N and SKPE I the instructions in this area will n Skip active loop area will be retaine	ot be executed. T										
	Ladder Diagram	Key Operations	Mnemonic (Codes									
X0 + + X1 + + X2 + + T20 + + X1 + +	- EN - T201 10 1 Y1 () 3	$\begin{array}{c} 0 \overrightarrow{RG} & X^{\vee} & \overrightarrow{OPEN} & E \overrightarrow{NT} \\ FUN & 2^{\Gamma} & E \overrightarrow{NT} \\ \hline FUN & 2^{\Gamma} & E \overrightarrow{NT} \\ \hline 1 & \overrightarrow{SHORT} & E \overrightarrow{NT} \\ \hline 0 \overrightarrow{NG} & X^{\vee} & \cancel{SHORT} & E \overrightarrow{NT} \\ \hline 0 \overrightarrow{V} & \cancel{V} & \cancel{OPEN} & E \overrightarrow{NT} \\ \hline 0 \overrightarrow{V} & 2^{\Gamma} & \overrightarrow{OPEN} & \cancel{SHORT} & \overrightarrow{C} \overrightarrow{Y} \\ \hline 1 & \cancel{V} & 2^{\Gamma} & \overrightarrow{OPEN} & \cancel{SHORT} & \overrightarrow{C} \overrightarrow{Y} \\ \hline \overrightarrow{NGG} & X^{\vee} & 2^{\Gamma} & \overrightarrow{OPEN} & \cancel{SHORT} & \overrightarrow{C} \overrightarrow{Y} \\ \hline \overrightarrow{NGG} & \overrightarrow{V} & 2^{\Gamma} & \overrightarrow{OPEN} & \cancel{SHORT} & \overrightarrow{C} \overrightarrow{Y} \\ \hline 0 \overrightarrow{NG} & \overrightarrow{V} & 2^{\Gamma} & \overrightarrow{OPEN} & \cancel{SHORT} & \overrightarrow{C} \overrightarrow{Y} \\ \hline 0 \overrightarrow{V} & \cancel{V} & \cancel{I} & \underbrace{E} & \overrightarrow{NT} \\ \hline 0 \overrightarrow{V} & \cancel{V} & \cancel{I} & \underbrace{E} & \overrightarrow{NT} \\ \hline 0 \overrightarrow{V} & \cancel{V} & \cancel{I} & \underbrace{E} & \overrightarrow{NT} \\ \hline 0 \overrightarrow{V} & \cancel{I} & \underbrace{E} & \overrightarrow{NT} \\ \hline 0 \overrightarrow{V} & \cancel{I} & \underbrace{E} & \overrightarrow{NT} \\ \hline 0 \overrightarrow{V} & \cancel{I} & \underbrace{E} & \overrightarrow{NT} \\ \hline 0 \overrightarrow{V} & \cancel{I} & \underbrace{E} & \overrightarrow{NT} \\ \hline 0 \overrightarrow{V} & \cancel{I} & \underbrace{E} & \overrightarrow{NT} \\ \hline 0 \overrightarrow{V} & \cancel{I} & \underbrace{E} & \overrightarrow{NT} \\ \hline 0 \overrightarrow{V} & \cancel{I} & \underbrace{E} & \overrightarrow{NT} \\ \hline 0 \overrightarrow{V} & \cancel{I} & \underbrace{E} & \overrightarrow{NT} \\ \hline 0 \overrightarrow{V} & \cancel{I} & \underbrace{E} & \overrightarrow{NT} \\ \hline 0 \overrightarrow{V} & \cancel{I} & \underbrace{E} & \overrightarrow{NT} \\ \hline 0 \overrightarrow{V} & \cancel{I} & \underbrace{E} & \overrightarrow{NT} \\ \hline 0 \overrightarrow{V} & \cancel{I} & \underbrace{E} & \overrightarrow{NT} \\ \hline 0 \overrightarrow{V} & \cancel{I} & \underbrace{E} & \overrightarrow{NT} \\ \hline 0 \overrightarrow{V} & \cancel{I} & \underbrace{E} & \overrightarrow{NT} \\ \hline 0 \overrightarrow{V} & \cancel{I} & \underbrace{E} & \overrightarrow{NT} \\ \hline 0 \overrightarrow{V} & \overrightarrow{V} & \overrightarrow{NT} \\ \hline 0 \overrightarrow{V} & \overrightarrow{V} & \overrightarrow{NT} \\ \hline 0 \overrightarrow{V} & \overrightarrow{V} & \overrightarrow{V} & \overrightarrow{V} & \overrightarrow{V} \\ \hline 0 \overrightarrow{V} & \overrightarrow{V} & \overrightarrow{V} & \overrightarrow{V} \\ \hline 0 \overrightarrow{V} & \overrightarrow{V} & \overrightarrow{V} & \overrightarrow{V} & \overrightarrow{V} \\ \hline 0 \overrightarrow{V} & \overrightarrow{V} & \overrightarrow{V} & \overrightarrow{V} & \overrightarrow{V} \\ \hline 0 \overrightarrow{V} & \overrightarrow{V} & \overrightarrow{V} & \overrightarrow{V} & \overrightarrow{V} & \overrightarrow{V} \\ \hline 0 \overrightarrow{V} & \overrightarrow{V} & \overrightarrow{V} & \overrightarrow{V} & \overrightarrow{V} & \overrightarrow{V} & \overrightarrow{V} \\ \hline 0 \overrightarrow{V} & \overrightarrow{V} \\ \hline 0 \overrightarrow{V} & $	FUN 2 N: N: C ORG 2 OUT 2 ORG 2 ORG 2 ORG 2 OUT 2	 C 0 C 1 C 1 C 2 T 201 C 1 S 3 									
		$\begin{array}{c} \begin{array}{c} 1 \\ 1$	ORG >	1 (1 (2									

FUN 3 SKPE	SKIP END	FUN 3 SKPE
Symbol	Operand	
	Ladder symbol N : SKIP END Loop number (N=0~127) N
	SKPE N can not be used repeatedly.	
Description		
	SKPE N must correspond to a SKP N instruction. They must always be used as a p also make sure that the SKPE N instruction is behind the SKP N instruction.	air and you
other ir will be	nstruction does not require an input control because the instruction itself forms a ne istructions can not connect to it. If the SKP N instruction has been executed then the sk completed when the execution of the program reaches the SKPE N instruction. If SKP N ver been executed then the SKPE instruction will do nothing.	ip operation
Example		
Please re	efer to the example and explanations for SKP N instruction.	
	P/SKPE instructions can be used by nesting or interleaving. The coding rules are the MC/MCE instructions. Please refer to the section of MC/MCE instructions.	same as for

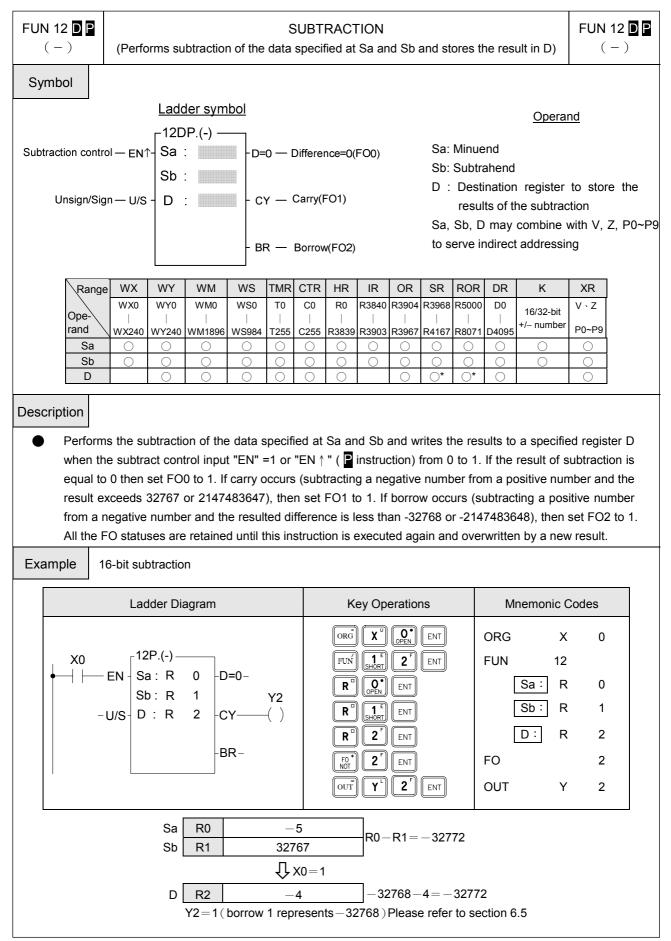


FUN 5 DIFD												
Symbol	Ladder symbol 5 status — TG↓ - DIFD D	-	<u>Operand</u> coil number where tial Down operatio									
	Range Ope- rand D	Y M SM S Y0 M0 M1912 S0 Y255 M1911 M2001 S999 O O O* O										
the put stored	FD instruction is used to output the lse signal resulting from the status to a coil specified by D. Inctionality of this instruction can also The results of the following two sar	change at the falling edge of the	e "TG↓" for one :									
	Ladder Diagram	Key Operations	Mnemonic (Codes								
Example	1 X15 ⊣	$\begin{array}{c} \overrightarrow{ORG} & \overleftarrow{X}^{U} & \underbrace{1}_{\text{ENORT}}^{E} & \overrightarrow{ENT} \\ \overrightarrow{FUN} & \overleftarrow{5}^{'} & \overrightarrow{ENT} \\ \overrightarrow{\mathbf{Y}}^{L} & \underbrace{0}_{\text{OPEN}}^{\bullet} & \overrightarrow{ENT} \end{array}$	ORG X FUN D: Y	1 5 0								
Example X1 ↓↓	2 ()	$\begin{array}{c c} ORG^{\bullet} & \underbrace{TU^{<}}{TD} & \underbrace{TU^{<}}{TD} & \underbrace{X^{\downarrow}}_{SHORT} & \underbrace{1^{E}}_{SHORT} & ENT \\ OUT^{\bullet} & \underbrace{Y^{\downarrow}}_{OPEN} & \underbrace{OPEN}_{ENT} & ENT \end{array}$	ORG TD X OUT Y	1 0								
	X1		t : scan time									

FUN 6 D P BSHF	(Shifts the data of the 16-bi	BIT SHIFT FUN 6 B BSHF (Shifts the data of the 16-bit or 32-bit register to left or to right by one bit)												
Symbol														
Shift control — E	Ladder symbol -6DP.BSHF	-out bit (FO0)	<u>Operar</u>	<u>nd</u>										
Fill-in bit — I	ив -		D: The	register nur	nber for s	hifting								
Range WY WM WS TMR CTR HR OR SR ROR DR Shift direction L/R - WY0 WM0 WS0 T0 C0 R0 R3904 R3968 R5000 D0 Ope- -														
Clear control—C	LR	0 0	0 0	0 0	0 0)* ()*	0							
● When * "EN" = left (L/ cases *	 When the status of clear control "CLR" is at 1, then the data of register D and FO0 will all be cleared to 0. Other input signals are all in effect. When the status of clear control is "CLR" at 0, then the shift operation is permissible. When the shift control "EN" = 1 or "EN ↑ " (instruction) from 0 to 1, the data of the register will be shifted to right (L/R=0) or to left (L/R=1) by one bit. The shifted-out bit (MSB when shift to left and LSB when shift to right) for both cases will be sent to FO0. The vacated bit space (LSB when shift to left and MSB when shift to right) due to shift operation will be filled in by the input status of fill-in bit "INB". 													
	Ladder diagram	Key Op	perations		Mnemoni	c Codes								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
X3=1 (Left shift)B15 \leftarrow B0 \leftarrow X2Y0Shifts the 16-bit data to left by one bitX2														
X3=0 (Right shi	t) $X^2 \xrightarrow{B15}{Sh}$	→ -→ -→ -→ -→ -→	\rightarrow	B0 ▶ → → → one bit	\rightarrow \bigvee Y0									

FUN 7 D UDCTR	— — — — — — — — — — — — — — — — — — — —														
Symbol			<u>er symb</u> DCTR–	<u>ol</u>							<u>Op</u>	erand			
$Clock - CK^{+} - CV : \qquad \qquad - CUP - Count-UP (FO0) \\ CV: The number of the Up/Down Counter PV: Preset value of the counter or it's register number \\ Clear counter - CLR - CLR$															
WX0 WY0 WM0 WS0 T0 C0 B0 B3840 B3904 B3968 B5000 D0															
Ope												 D4095	16/32 +/– nu		
rand C		0	WM1896	0	T255	C255	R3839	R3903	R3967	R4167	R8071	04095			
P	/ 0	0	0	0	0	0	0	0	0	0	0	0	C)	
 count. When instruct decreation When counting will or the "C The unif ano limit on The log reacher (the unif U/D instruct 	PV 0 0 0 0 0 0 0 0 0 0 0 0 0 0														
	Example The diagram below is an application example of UDCTR instruction being applied to an encoder. Image: Constraint of the diagram below is an application example of UDCTR instruction being applied to an encoder. Image: Constraint of the diagram below is an application example of UDCTR instruction being applied to an encoder. Image: Constraint of the diagram below is an application example of UDCTR instruction being applied to an encoder. Image: Constraint of the diagram below is an application example of UDCTR instruction being applied to an encoder. Image: Constraint of the diagram below is an application example of UDCTR instruction being applied to an encoder. Image: Constraint of the diagram below is an application example of UDCTR instruction being applied to an encoder. Image: Constraint of the diagram below is an application example of UDCTR instruction being applied to an encoder. Image: Constraint of the diagram below is an application example of UDCTR instruction being applied to an encoder. Image: Constraint of the diagram below is an application example of UDCTR instruction being applied to an encoder. Image: Constraint of the diagram below is an application example of UDCTR instruction being applied to an encoder. Image: Constraint of the diagram below is an application example of UDCTR instruction below is an application example of UDCTR instruction below is an application example of UDCTR instruction example														

1 scan time.



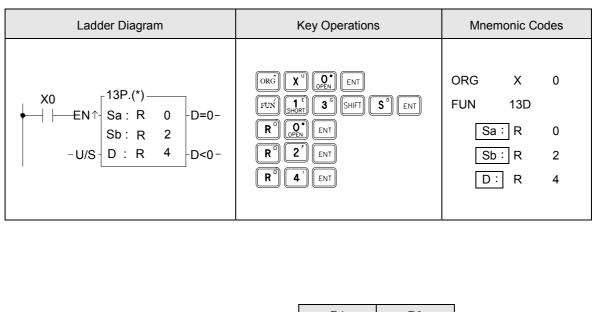
	N 8 D P MOV					(Mo	oves	MO∖ data f	/E rom S	to D)					FUN 8 MC	
Description Ladder symbol Operand Move control - EN^- S : S: Source register number D : D : D: Destination register number D : The S, N, D may combine with V, Z, P0~P9 to sindirect addressing Range WX WY WM														P9 to se	rve	
Desc	Ope- rand S D	WX0 WX240 	WY0 WY240 	WM0 WM1896 	WS0 WS984 	T0 T255 	C0 C255 	R0 R3839 	R3840 R3903 	R3904 R3967 	R3968 R4167 *	R5000 R8071 	D0 D4095 	K 16/32-bit +/- number O	V \ Z P0~P9 O	↑ " (P
Exa	instruc mple	Writes	a con	stant da	ta into a	a 16-b	oit reg		Кеу Ор	eration	s		Mne	emonic Co	odes	
	Ladder DiagramKey OperationsMnemonic Codes X_0 \mathbb{R}^0 \mathbb{R}^0 \mathbb{R}^1 \mathbb{R}^0 \mathbb{R}^1															
$S \ K \ 10 \ \sqrt{3} \ X0 = \int D \ R0 \ 10$																

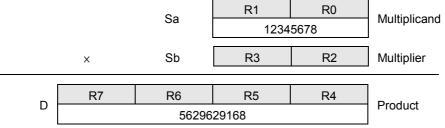
	N 9 D P MOV/		(Invei	ts the c	lata of			′E IN√ ∕es th			speci	fied de	evice	D)		9 D P OV/
Syı	mbol													1		
	Move conti	rol — El	א¢-[נ	<u>adder s</u> 9DP.MC S : D :	-				D: D S, N	ource r estinat , D ma ect ado	ion reg y com	r numb jister n bine wi	umber		to serve	
	Danas	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	К	XR	1
		WX0	WY0	WM0 WM1896	WS0 WS984	ТО 	C0	R0	R3840	R3904 R3967	R3968 R4167	R5000	D0	16/32-bit +/– number	V · Z	
	S D	0	0	0	0	0	0	0	0	0	0 0*	○ ○*	0	0	0	
•	Description ● Inverts the data of S (changes the status from 0 to 1 and from 1 to 0) and moves the results to a specified register D when the move control input "EN" =1 or "EN ↑ " (instruction) from 0 to 1. Example Moves the inverted data of a 16-bit register to another 16-bit register.															
		Lao	dder D	iagram				K	ey Ope	eration	s		Mn	iemonic C	odes	
	Ladder Diagram Key Operations Mnemonic Codes X0 9.MOV/ 0RG X 0 FUN 9° ENT ORG X 0 FUN 9° ENT S: R 0 D: WY 8° ENT D: WY 8															
	B15 S R0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 5555H															
	$ \begin{array}{c} $															

FUN 10 TOGG	T (Changes the output status	input occur)	FUN 10 TOGG								
Symbol Input tri	Symbol Operand Ladder symbol $Operand$ Input trigger - EN↑- TOGG D D: the coil number of the toggle D: the coil number of the toggle										
	Range Ope- rand D	Y M SM S Y0 M0 M1912 S0 Y255 M1911 M2001 S999 O O O* O									
	bil D changes its status (from 1 to 0 ng edge).	and from 0 to 1) each time the inpu	ıt "TG ↑ " is trigger	ed from 0 to							
Example											
	Ladder Diagram	Key Operations	Mnemonic (Codes							
+	X0 ⊣	$\begin{array}{c} \overrightarrow{ORG} & X \\ \hline & O \\ \overrightarrow{PEN} & ENT \\ \hline \\ FUN & \underbrace{1}_{SHORT} & O \\ \overrightarrow{OPEN} & ENT \\ \hline \\ Y \\ \hline & O \\ O \\ \overrightarrow{PEN} & ENT \end{array}$	ORG X FUN 10 D: Y	0 0							
	X0 Y0										

FUN 11		(Pei	rforms	addition	of the	data s		DITIC		l Sb ai	nd stor	es the	result	in D)	FUN 1	
Symbol				<u>der sym</u> P.(+) —									<u>0</u>	perand		
Addition Unsig		I— EN↑ 1—U/S	Sb		- c	Y — 0	Sum=0 Carry(F Sorrowe	O1)		: :	of tł Sa, Sb	dend stinatio ne add , D ma	ition ay con		ore the res	
	Range Ope- and Sa Sb D	WX0	WY WY0 WY240 O O	WM WM0 WM1896 O O	WS WS0 WS984 O O	TMR T0 T255 O O O	CTR C0 	HR R0 R3839 O O O		OR R3904 R3967 		ROR R5000 - R8071 - - - - - - - - *	DR D0 - D4095 O O	K 16/32-bit +/- number	XR V · Z P0~P9 O	
Pe will 0 0 0	 Performs the addition of the data specified at Sa and Sb and writes the results to a specified register D when the add control input "EN" =1 or "EN ↑" (instruction) from 0 to 1. If the result of addition is equal to 0 then set FO0 to 1. If carry occurs (the result exceeds 32767 or 2147483647) then set FO1 to 1. If borrow occurs (adding negative numbers resulting in a sum less than -32768 or -2147483648), then set the FO2 to 1. All the FO statuses are retained until this instruction is executed again and overwritten by a new result. 															
Example	e	16-bit ad														
		EN↑- Si SI	der Dia IP.(+)– a : R b : R : R	Y0 -()			K ^V Ope (V) O				ORG FUN	x 11P Sa: R Sb: R D: R 1 Y	0			
Sa R0 12345 Sb R1 20425 $I \times 0 = I$ R0 + R1 = 32770 $I \times 0 = I$ D R2 2 32768+2=32770 Y0=1 (carry 1 represents + 32768)																

FUN 13 D P (*)	(Performs m	MULTIPLICATION FUN 13 D P Performs multiplication of the data specified at Sa and Sb and stores the result in D) (*)												
Symbol	(opeen								X	
	ontrol — EN [↑] -	<u>Ladder</u> -13DP.(Sa :	-	1	— Proc	duct=0	(FO0)			a: Mul	-		<u>rand</u>	
Unsigr	/Sign — U/S -	Sb : D :		- D<0	— Proc	duct is (FO		/e	S	res a, Sb	ults of , D r	on registe the multij nay com ve indirec	blication	hV,Z,
Range	WX WY WX0 WY0	WM WM0	WS WS0	TMR T0	CTR C0	HR R0	IR R3840	OR R3904	SR R3968	ROR R5000	DR D0	K	XR V · Z	
Ope- rand			US984	 T255						 R8071		16/32-bit +/- number	V ∠ P0~P9	
Sa	Sa O O O O O						0	0	0	0	\bigcirc	0	0	
Sb D	0 0	0	00	0	00	0	00	0 0*	○ ○*	0	0	0		
● Performs the multiplication of the data specified at Sa and Sb and writes the results to a specified register □ Performs the multiplication control input "EN" =1 or "EN ↑ " (□ instruction) from 0 to 1. If the product or multiplication is equal to 0 then set FO0 to 1. If the product is a negative number, then set FO1 to 1. Example 1 16-bit multiplication														
	Ladder Di	agram				Key	o Oper	ations			Mr	nemonic C	odes	
xo 	==EN↑- Sa : Sb : -U/S - D :	-	OR FU R) P ^	ENT		S	X 13P Sa: R Sb: R D: R	0 0 1 2			
	× D							Mu	ultiplic: ultiplie oduct					


MULTIPLICATION


FUN 13 D P

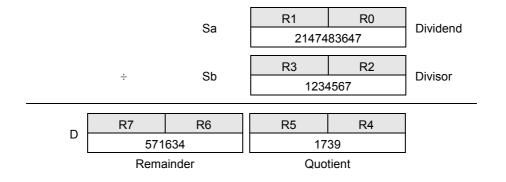
(Performs multiplication of the data specified at Sa and Sb and stores the result in D)

(*)

Example 2 32-bit multiplication

	\ 14 D ₽ (∕)	(Pe	DIVISION FUN 14 D P (Performs division of the data specified at Sa and Sb and stores the result in D) (//)													
Sy	mbol		Ladde	er symb	ol										1	
			14DF	•	_								<u>0</u>	perand		
Divis	sion control -	– EN↑-			- D=0) — C	uotier	nt=0 (F	00)	5	Sa: Div	idend				
Divit			Sb :			, .	aotioi		00)	5	Sb: Div	isor				
								:- 0 (F	0 (1)	[-	ister to sto	re the r	esults
	Insign/Sign -	- 0/8 -	D :		FERI	< — ι	nvisor	is 0 (F	01)	c		וe divi		nhina with	V 7 6	0
													-	nbine with dressing	V, Z, Г	0~F9
										ŭ	0 301 10			licoonig		
	Range	WX	WY	WM	WS		CTR	HR	IR	OR	SR	ROR	DR	К	XR	
	Ope-	WX0	WY0	WM0	WS0	T0	C0	R0	R3840	R3904	R3968	R5000	D0	16/32-bit	V · Z	
	rand	WX240	-	WM1896	-					-	-		-	+/- number	P0~P9	
	Sa Sb		0	0	0	0	0	0	0	0	0	0	0	0	0	
	D		0	0	0	0	0	0		0	O *	O*	0	\bigcirc	0	
Desc	Description															
	 Performs the division of the data specified at Sa and Sb and writes the quotient and remainder to registers 															
														nd remain uction) froi		
														rror flag F		
	executi	ng the i	nstructi	ion.												
Exa	ample 1	16-bi	it divisio	on												
		Lad	lder Dia	agram				K	ey Op	eratior	ns		N	Inemonic (Codes	
			440	(1)				ORG	XŬ	OPEN	ENT		ORG	Х	0	
	X0		14P.			~		FUN		4 [']	ENT		FUN	14		
		— EN	- Sa:			0-		R		ENT			Г	Sa: R	0	
				R 1		-			\equiv				L _			
		-0/S	D:	R 2	-ER	R-		R		ENT				Sb: R	1	
								R	2	ENT				D: R	2	
L																
							S	Sa 🗕	R0		Divid	end				
									256	נ						
			÷		S	Sb	R1 12		Divis	or						
					D		R3 4		R2 21]					
	Remainder									ent						

Example 2


32-bit division

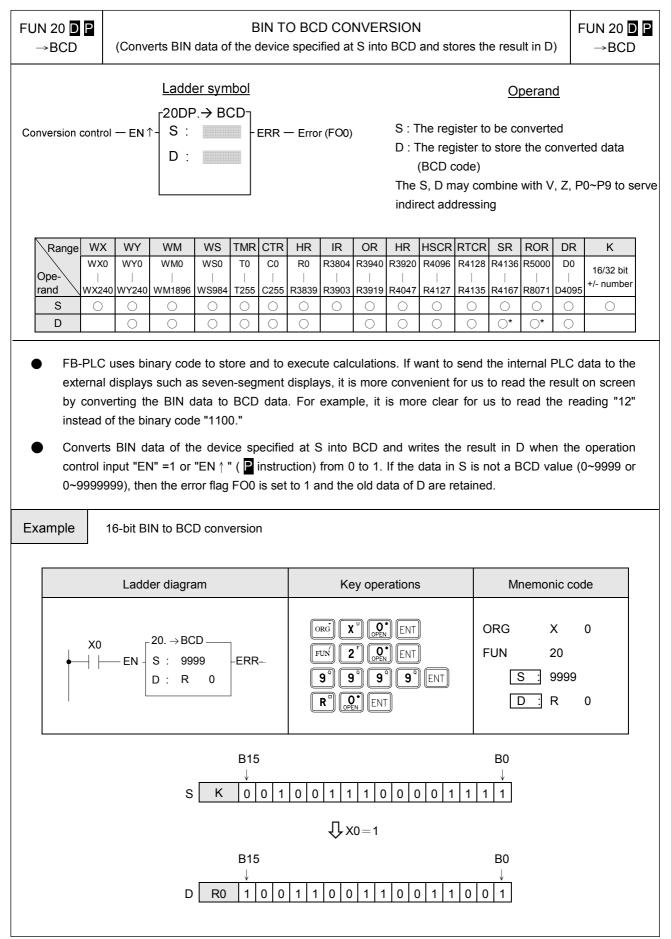
(Performs division of the data specified at Sa and Sb and stores the result in D)

DIVISION

FUN 14 D P (/)

Ladder Diagram Key Operations **Mnemonic Codes** OPEN ENT ORG X ORG Х 0 ₋14P.(/) -X0 FUN FUN 1 E 14D – EN – Sa: R -D=0-0 \downarrow OPEN ENT R Sa : R 0 2 Sb: R R 2 ENT 4 -U/S | D : R Sb : -ERR-R 2 R 4 ENT D : R 4

FUN 15 D P (+1)		INCREMENT (Adds 1 to the D value) FUN 15 D (+1)												
Increment contro	^{_150}		ymbol D		'F — O∿	verflow(F	-O0)	Dn	The reg nay cor irect ac	nbine v	with V,	crease	d P9 to serve	
Ope- rand D Adds 1 the val value v overflor	rand WY240 WM1896 WS984 T255 C255 R3839 R3919 R4047 R4127 R4135 R4167 R8071 D4095 P0~P9 D O <td< td=""></td<>													
	Example 16-bit increment register Ladder diagram Key operations Mnemonic code													
×0 ↓	₋15.—-	R 0V	OVF		F	rg TU TD IN SHOR R QPEN	< X ^U T T T T T T T T T	OPEN (ENT	OR	G TU	X 15] R	0 0V	
When $V = 100 \cdot 0 + 100 = 100$ D R100 1 V = T D R100 2														

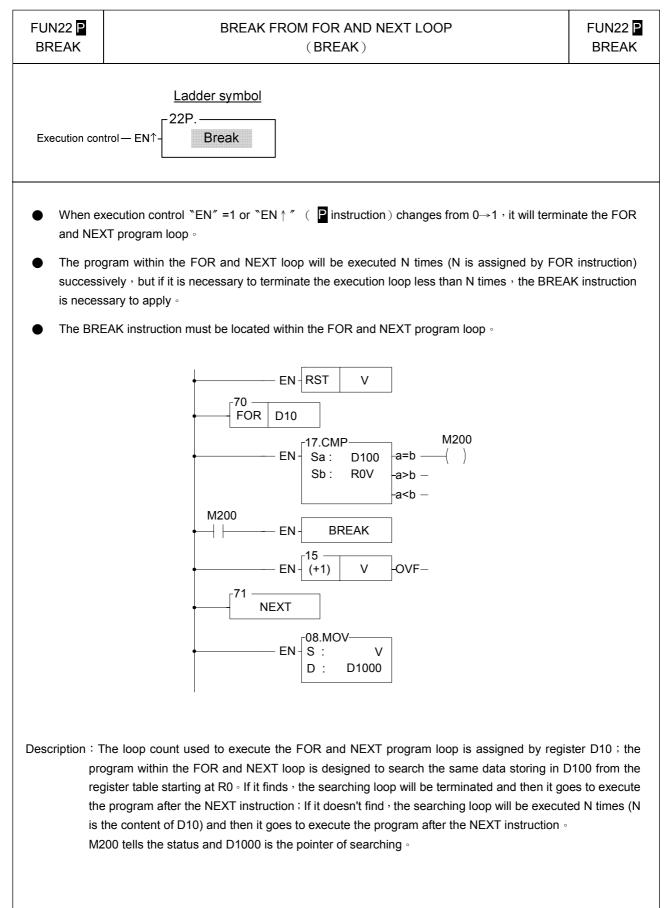

FUN 16 D P (-1)		DECREMENT (Subtracts 1 from the D value)FUN 16 D P (-1)											
Decrement contr	۲ ^{16[}	100000000000000000000000000000000000000		DF —	Underflo	ow(FOO)	D may	comb	<u>Open</u> ster to b ine with ct addre	e decro n V, Z,	eased P0~P9 to	
Description Subtraction to 1. If one fro	WY0 WM0 WS0 T0 C0 R0 R3904 R3920 R4096 R4128 R4136 R5000 D0 V · Z I												
Example	Example 16-bit decrement register Ladder diagram Key operations Mnemonic code												
×0 -	₋16P.—-	R 0-UD	F		ORG)	K ^V O ^C D ^E D ^E ENT	ENT P	ENT	OF	RG	X 16] R	0	
$D \boxed{R0} 0$ $\bigcup X0 = \int D$ $D \boxed{R0} -1$													

FUN 17 D P CMP	(Compare	s the da	ata of S	Sa and		MPAR Id outp		e result	s to fu	nction	Output	s)		N 17 <mark>D P</mark> CMP
Compare cont Unsign/Si	^{17ا}		P	a > b -	– Sa>S	Sb (FO0 Sb (FO1 Sb (FO2)	Sb: T Sa, S	The reg Sb may	gister to	o be co o be co ine wit	erand ompare ompare h V, Z, g	d	9 to
Sa O Sb O Compa 1. If the	WX0 WY0 WM0 WS0 T0 C0 R0 R3804 R3904 R3920 R4096 R4128 R4136 R5000 D0 16/32 bit rand WX240 WY240 WM1896 WS984 T255 C255 R3839 R3903 R3919 R4047 R4127 R4135 R4167 R8071 D4095 +/-number Sa O													
Example														
	Ladder dia	agram				Ke	ey oper	ations			Mne	emonic	code	
x0 ∳ 	-EN ↑- Sa : R Sb : R U/S -	1	a=b — a>b — a <b td="" —<=""><td>Y0 —()</td><td></td><td>ORG FUN R R NOT OUT</td><td></td><td>7[™] [EI</td><td>7</td><td>OF FL FC OL</td><td>IN Sa Sb</td><td>_</td><td>0 0 1 0</td><td></td>	Y0 —()		ORG FUN R R NOT OUT		7 [™] [EI	7	OF FL FC OL	IN Sa Sb	_	0 0 1 0	
 From the above example, we first assume the data of R0 is 1 and R1 is 2, and then compare the data by executing the CMP instruction. The FO0 and FO1 are set to 0 and FO2 (a<b) 1="" a<b.<="" is="" li="" set="" since="" to=""> If you want to have the compound results, such as ≥ < ≤ < > etc., please send = < and > results to relay first </b)>														

- and then combine the result from the relays.
- M1919=0, when this command in not executed, FO0, FO1, FO2 will remain in the status at last execution.
- M1919=1, when this command in not executed, FO0, FO1, FO2 are all cleared to 0.
- Control M1919 properly to obtain memory-holding function for functional command output.

	18 D P AND						LOG	BICAL	AND						FU	N 18 D P AND
Oper	ration cont	rol — EN	Γ^{18E}	ler syn DP.ANI : :	D	D=0—	Resul	t is 0 (F	O0)	Sb: T D : T The S	The reg the reg Sa, Sb	jister to ister to , D ma	b be AN b be AN store	NDed the res pine wi	ult of <i>i</i> th V, Z	AND 2, P0~P9 to
Ra Ope rand) WY0	WM WMO	WS WS0	TMR T0 T255	CTR C0 -	HR R0 R3839	IR R3804 R3903	OR R3904 R3919	HR R3920 R4047		R4128	SR R4136 R4167	ROR R5000	DR D0 D4095	K 16/32 bit +/-number
S	ia (WA24 ia () ib () D	0 WY240		0 0	0 0	C255	Contraction (Contraction)	0	 C C<		R4127	R4135	0 0 0*	R8071	0 0	0
• Exa	 Performs logical AND operation for the data of Sa and Sb when the operation control input "EN" =1 or "EN ↑ " (instruction) from 0 to 1. This operation compares the corresponding bits of Sa and Sb (B0~B15 or B0~B31). The bit in the D is set to 1 if both of the corresponding bits data of Sa and Sb is 1. The bit in the D is set to 0 if one of the corresponding bits is 0. Example Operation of 16-bit logical AND 															
		Lac	dder dia	gram				K	ey ope	rations	i		Mn	emoni	c code	
	×i) ├──EN 1	18P.A Sa : Sb : D :	R 0 R 1	-D=	0 —		FUN SH	X ^U O D OPF 1 ^E 8 0 ^o F EN 1 ^E EN 2 ^F EN 2 ^F EN		ENT	_	RG UN Sa Sb	:] R :] R	3P 0 1	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															
	$ \begin{array}{c} $															

FUN	N 19 OR	DP						LO	GICA	LOR						FU	N 19 D P OR
Ope	eration	contro	I — EN′	Г ^{19D}			- D=0 -	— Res	ult is 0 (FO0)	Sb: ⁻ D : T The	The reg The reg Sa, St	gister to gister to o, D ma	o be O o be O o store	Red the res bine wi	sult of (OR Z, P0∼P9 to
	Range	WX WX0	WY WY0	WM WM0	WS WS0	TMR T0	CTR C0	HR R0	IR R3804	OR R3904	HR R3920	HSCR R4096		SR R4136	ROR R5000	DR D0	K 16/32 bit
Op rar	\	 WX240	 WY240	 WM1896	 WS984	 T255	 C255	 R3839	 R3903	 R3919	 R4047	 R4127	 R4135	 R4167	 R8071	 D4095	+/-number
	Sb D	0	0	0	0	0	0	0	0	0		0	0	0 0*	0 0*	0	0
			U	0	0		0	0		0		Ŭ	Ŭ	Ŭ	Ŭ	0	
Exa	 Performs logical OR operation for the data of Sa and Sb when the operation control input "EN" =1 or "EN↑" (instruction) from 0 to 1. This operation compares the corresponding bits of Sa and Sb (B0~B15 or B0~B31). The bit in the D is set to 1 if one of the corresponding of Sa or Sb is 1. The bit in the D is set to 0 if both of the corresponding bits of Sa and Sb is 0. Example Operation of 16-bit logical OR 																
			Lad	der diag	Iram				к	ey ope	erations	6		Mn	nemoni	c code	
	Ladder diagram X0 \downarrow \downarrow \downarrow $EN = \begin{bmatrix} 19.OR \\ Sa : R & 0 \\ Sb : R & 1 \\ D : R & 2 \end{bmatrix} - D=0 - $									1 SHORT O* OPEN 1 1 1 1 1 1 1 1	OPEN B° ENT ENT ENT	ENT		DRG SUN St D	<u>)</u> : R	9 0 1	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																

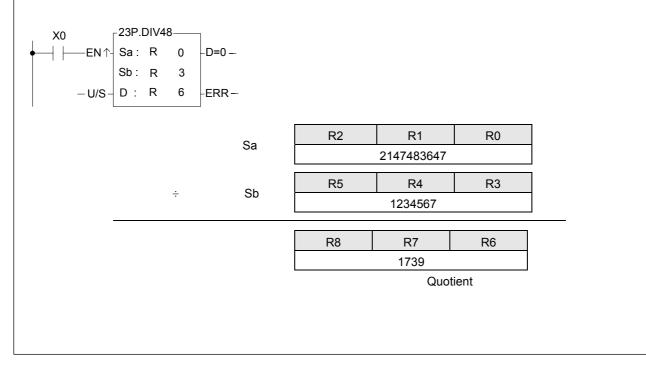

	21 D P ∍BIN		onvert	s BCD d	ata of tl			BIN C				tores t	he resu	ult in D)		JN 21 →Bll	
Conv	version co	ntrol —	Г	Ladder -21DP S: D:	→ BIN	٦	R — E	Error (FC	00)	ם ד	S : The) : The (BIN The S, I serve in	registe I code) D may	er to be er to sto) combir	ore the	conve		
	Range	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	HR	HSCR	RTCR	SR	ROR	DR	1
		WX0	WY0	WM0	WS0	Т0	C0	R0	R3840	R3904		R4096	R4128	R4136	R5000	D0	
	Ope- rand	 WX240	WY240	 WM1896	 WS <u>984</u>	 T255	 C255	 R3839	 R3903	 R3919	 R4047	 R4127	 R4135	 R4167	 R8071	 D4095	
	S	0	0	0	0	\bigcirc	\bigcirc	0	0	0	0	0	0	0	0	0	
	D		\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc		0	0	0	0	O*	O*	0	
• Exa	 The decimal (BCD) data must be converted to binary (BIN) data first in order for PLC to accept the data which is originally in decimal unit (BCD code) inputted from external device such as digital switch because the BCD data can not be accepted by PLC for its operations. Converts BCD data of the device specified at S into BIN and writes the result in D when the operation control input "EN" =1 or "EN ↑ " (P instruction) from 0 to 1. If the data in S is not in BCD, then the error flag FO0 is set to 1 and the old data of D are retained. Constant is converted to BIN automatically when store in program and can not be used as a source operand of this function. Example 16-bit BCD to BIN conversion 																
		l	_adder	diagram	l				Key o	peratio	ns		Μ	Inemor	nic cod	e	
	× •		N↑- S	IP.→BIN : WX : R		FUN W B TR R	2 [†]	OPEN EN 1 EN HORT F OPEN EN ENT		n	ORG FUN	3 : W	1P 'X 0				
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												-				
								Ûx0	_								
		$ \begin{array}{c} $															

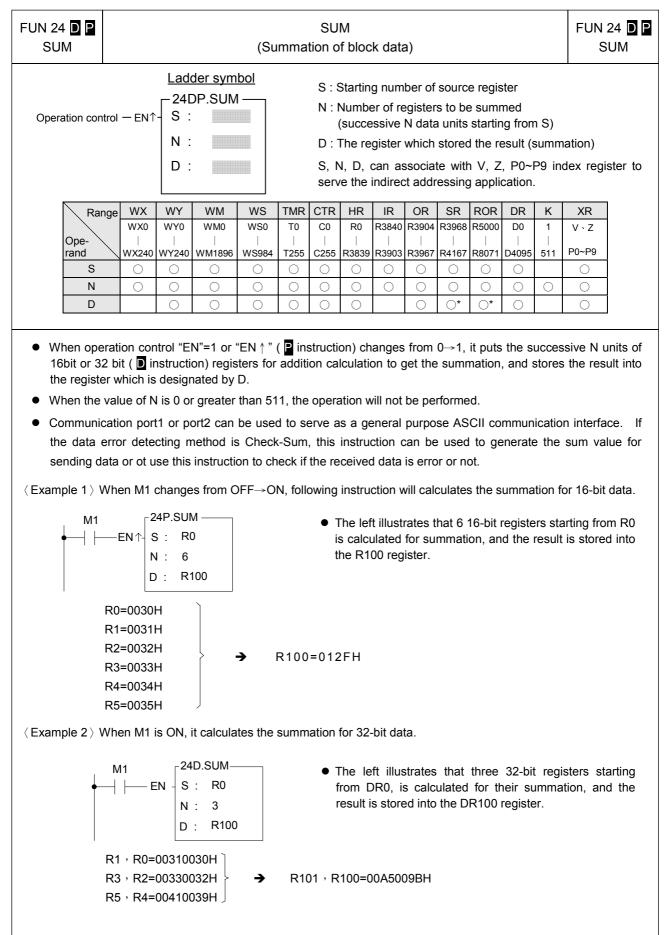
Chapter 7 Advanced Function Instructions

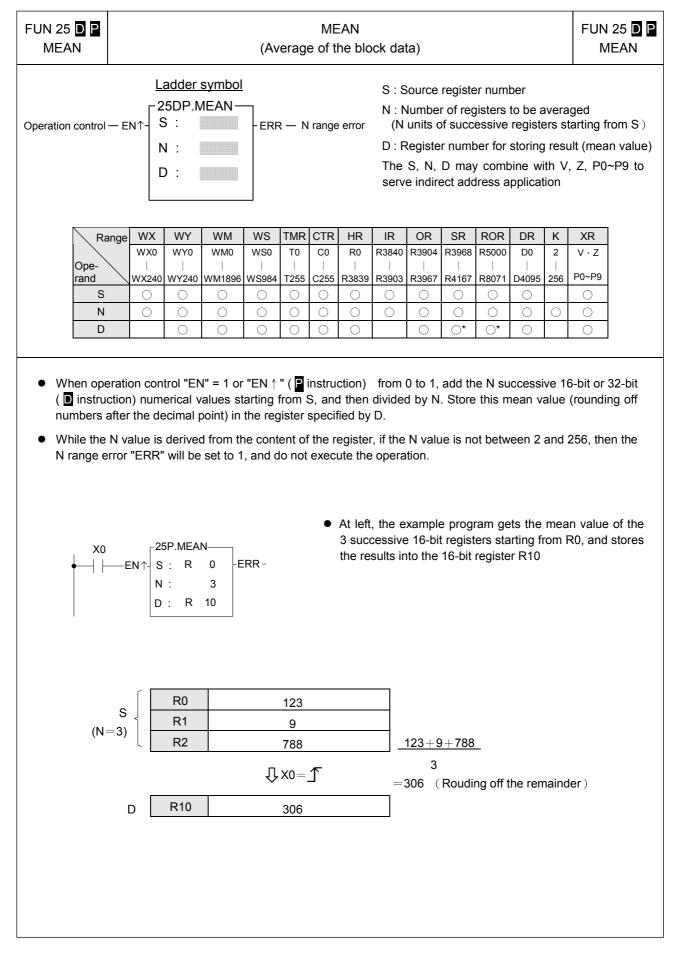
•	Flow control instructions1	(FUN22)7-1
•	Arithmetical operation instructions	(FUN23~32)7-2 ~ 7-9
•	Logical operation instructions	(FUN35~36)7-10 ~ 7-13
•	Comparison instructions	(FUN37)7-14
•	Data movement instructions1	(FUN40~50)
•	Shifting / Rotating instructions1	(FUN51~54)
•	Code conversion instructions	(FUN55~64)7-30 ~ 7-46
•	Flow control instructions2	(FUN65~71)7-47 ~ 7-54
•	I/O instructions	(FUN74~86)
•	Cumulative timer instructions	(FUN87~89)
•	Watchdog timer instructions	(FUN90~91)7-75 ~ 7-76
•	High speed counting / timing	(FUN92~93)7-77 ~ 7-78
•	Report printing instructions	(FUN94)7-79 ~ 7-80
•	Slow up / Slow down instructions	(FUN95)7-81 ~ 7-82
•	Table instructions	(FUN100~114)7-84~7-101
•	Matrix instructions	(FUN120~130)7-103 ~ 7-113
•	NC positioning instructions	(FUN140~143)7-114 ~ 7-119
•	Enable / Disable instructions	(FUN145~146)7-120 ~ 7-121
•	Communication instructions	(FUN150~151)7-122 ~ 7-123
•	Date movement instructions2	(FUN160)

• Floating Point Number operation instructions(FUN200~213)......7-126 ~ 7-140

Advanced Function Instruction

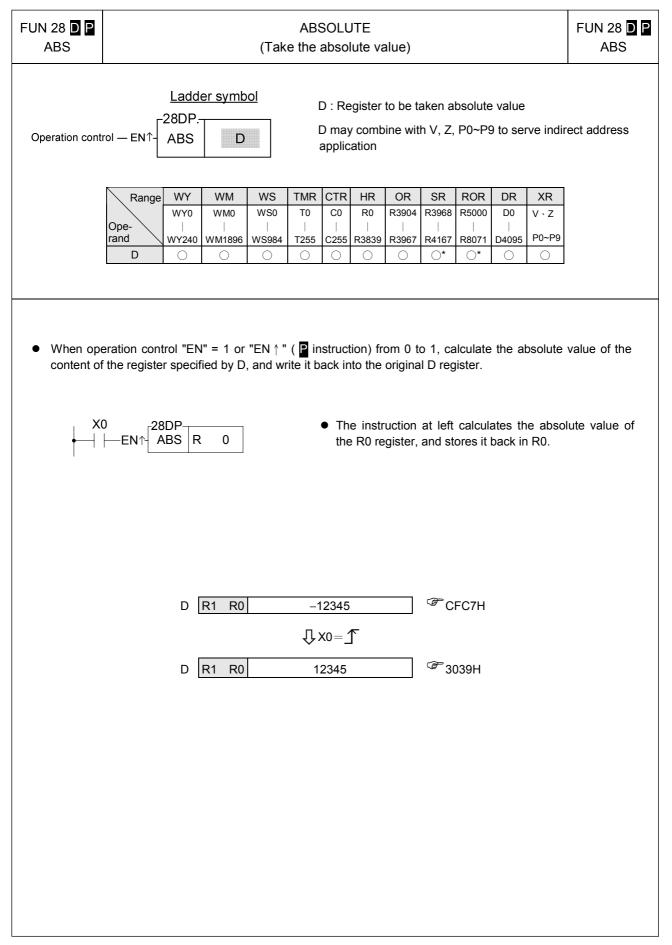


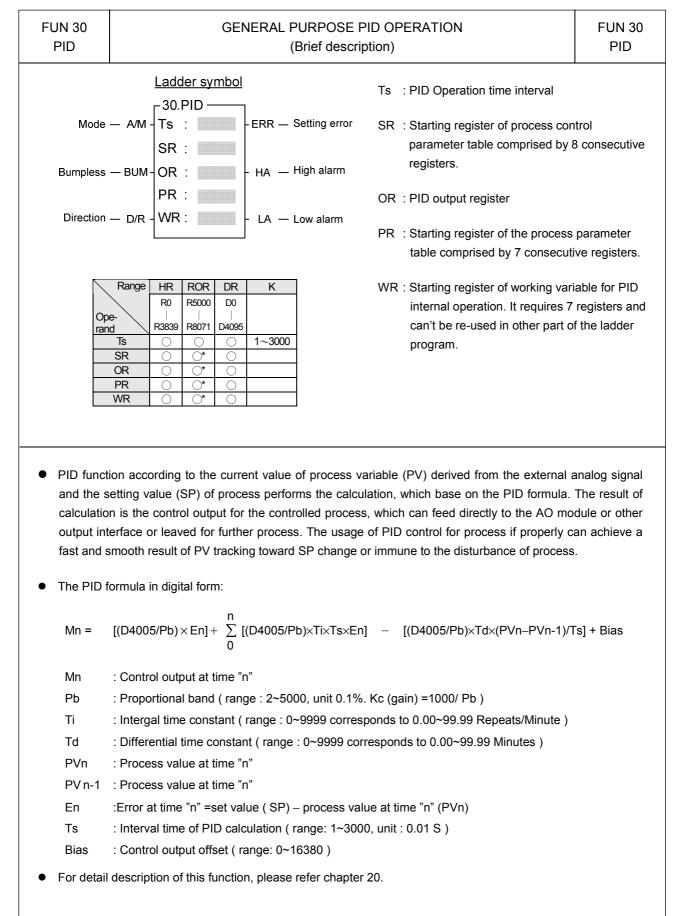

FUN 23 P DIV48			4	8-BIT	DIVIS	SION				FUN 23 P DIV48
Operation contro Unsign/Sigr	I — EN↑ - Sa ∶ Sb ∶			– Quot – Divis			Sb: D Sa,	Starting Starting result	g register of divider g register of divisor g register for storin (quotient) n combine V, Z, P0	g the division
		Range	HR	OR	SR	ROR	DR	XR		
		Ope- rand	R0 R3839		R3968 R4167		D0 D4095	V · Z P0~P9		
		Sa	0	\bigcirc	0	0	\bigcirc	\bigcirc		
		Sb	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
		D	\bigcirc	\bigcirc	○*	()*	\bigcirc	\bigcirc		


- When operation control "EN"=1 or "EN ↑" (p instruction) changes from 0→1, will perform the 48 bits division operation. Dividend and divisor are each formed by three consecutive registers starting by Sa and Sb respectively. If the result is zero, 'D=0' output will be set to 1. If divisor is zero then the 'ERR' will be set to 1 and the resultant register will keep unchanged.
- All operands involved in this function are all 48 bits, so Sa, Sb and D are all comprised by 3 consecutive registers.

Example: 48-bit division

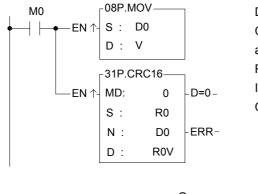
In this example dividend formed by register R2, R1, R0 will be divided by divisor formed by register R5, R4, R3. The quotient will store in R8, R7, and R6.





FUN 26 D P SQRT					S	QUAI	RE RC	от						FUN 20 SQI	
Operation control	— EN↑	_26D		хт	ERR —	- S ranç	ge error	D: (S, I	Registe square D may	er for s e root v comb	storing /alue)	result th V,	n squar Z, P0~	e root P9 to s	erve
Range	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	К	XR	1
Kang	WX0	WY0	WM0	WS0	то	CO	R0	R3840	R3904	R3968		D0		>/ 7	-
Ope-			1										16/32-b	P0~P9	
rand S	0	0	WM1896	0	T255	C255	R3839	R3903	C	C R4167	R8071	D4095	0	0	
D		0	0	0	0	0	0		0	 *	*	0		0	
● While the flag "ERR X0 ∳ -		26DP S:	1, and c .SQRT – 483647		execute	e the o	peratic The	in.	tion at	left c	alculate	es the		e root of	
			S		К		2	14748:	3647						
							,	₽ X0=	-1						
			D	R	1 R0			4634	0]				
							R1			R0	·				
					$\sqrt{214}$	74836	47 =	46340.	<u>95</u>						
									↑						
							rou	unding	off						

FUN 27 D P NEG	NEGATION (Take the negative value)	FUN 27 D P NEG
Operation cont	Ladder symbol D : Register to be negated 27DP D may combine with V, Z, P0~P9 to serve ind application	irect address
	Range WY WM WS TMR CTR HR OR SR ROR DR XR WY0 WM0 WS0 T0 C0 R0 R3904 R3968 R5000 D0 V \ Z Ope- rand I	
the value	eration control "EN" = 1 or "EN \uparrow " (P instruction) from 0 to 1, negate (ie. calculate 2's c of the content of the register specified by D, and store it back in the original D register. e of the content of D is negative, then the negation operation will make it positive.	omplement)
×	0 _ 27P —EN↑ NEG R 0 The instruction at left negates the value register, and stores it back to R0.	e of the R0
	D <u>R0 12345</u> ^C 3039H ↓ X0= ∫	
	D R0 -12345 ^{CF} CFC7H	



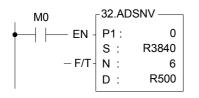
FUN 29 D P EXT				S	SIGN	EXTE	ENSIO	N					FUN 29 D P EXT
Operation co	ntrol — EN↑-	Г ^{29Р.–}	lder syr	nbol D		D ma	Register ay com cation			-			rect address
	Range	WY	WM	WS	TMR	CTR	HR	OR	SR	ROR	DR	XR	
	Ope- rand	WY0 //////////////////////////////////	WM0 WM1896	WS0 WS984	T0 T255	C0 C255	R0 R3839	R3904 R3967	R3968 R4167	R5000 R8071	D0 D4095	V ∖ Z P0~P9	
	D	0	\bigcirc	0	0	0233	0	0	O*		0	0	
 This instr register (+,-,*,/,CM 	(for examp	nt the n le 33Fl ich can	umerica FH conv take the	l value verts to e 16 bit	of a 1 0000 or 32	6-bit r 033FF bit nı	egister H), Its umerica	into a main al value	n equi [,] funct	valent ion is	numeri for n	umerica	e in a 32-bit I operations ration all the
×0 ∳ -	–EN∱_ 29I EX		0 R1			ar ste ar	nd exte	nds it	to an	equiva egister	alent v	alue in	ical value R0, 32 bits, then comprised R0
D R1 R) Ign	ore the	value of extens		ore		1 1 0	0 1	1 1 1	1 1	0 0 0	1 1 1	- 12345
					Û	-X0=	_						
D R1 R		1 1 1 Fill B15	R1 1 1 1 value in	1 1 1 to B31-I	1 1 B16,(it		1 1 0	0 1 en B31	R 1 1 1 -B16 a	1 1))	B() — 12345
	ension(16 Ision(32 bi			CFC7H FCFC7I			т т {	ne two	numer	ical val	ues ar	e actual	ly the same

FUN31 P CRC16				C		ALCULATION RC16)	FUN31 P CRC16
Executrion contro	N − EN↑- Range F Range R3 MD	Ladde - 31P.C MD : S : D : 	R DR 0 D0 1 D4095 	- D= - EF	=0 — RR —	 MD : 0, Lower byte of registers to be calcu CRC16 : 1, Reserved S : Starting address of CRC16 calculation N : Length of CRC16 calculation (In Byte) D : The destination register to store the calc CRC16, Register D stores the Upper Byte of CRC Register D+1 stores the Lower Byte of CRC S, N, D may associate with V \ Z \ P0~P9 in serve the indirect addressing application 	culation of C16 CRC16

- When execution control "EN"=1 or "EN ↑" (I instruction) changes from 0→1, it will start the CRC16 calculation from the lower byte of S and by the length of N, the result of calculation will be stored into register D and D+1.
- The output indication "D=0" will be ON if the value of calculation is 0.
- It will not execute the calculation and the output indication "ERR" will be ON if the length is invalid.
- When communicating with the intelligent peripheral in binary data fromat, the CRC16 error detection is used very often; the well known Modbus RTU communication protocol uses this method for error detection of message frame.
- CRC16 is the check value of a Cyclical Redundancy Check calculation performed on the message contents.
- Perform the CRC16 calculation on the received message data and error check value, the result of the calculation value must be 0, it means no error within this message frame.

Description : When M0 changes from $0 \rightarrow 1$, it will execute the CRC16 calculation starting from lower byte of R0, the length is assigned by D0, and then stores the CRC value into register R0+V and R0+V+1.

It is supposed D0=10, the registers R10 and R11 will store the CRC16 value.


	ç	6
	High Byte	Low Byte
R0	Don't care	Byte-0
R1	Don't care	Byte-1
R2	Don't care	Byte-2
R3	Don't care	Byte-3
R4	Don't care	Byte-4
R5	Don't care	Byte-5
R6	Don't care	Byte-6
R7	Don't care	Byte-7
R8	Don't care	Byte-8
R9	Don't care	Byte-9

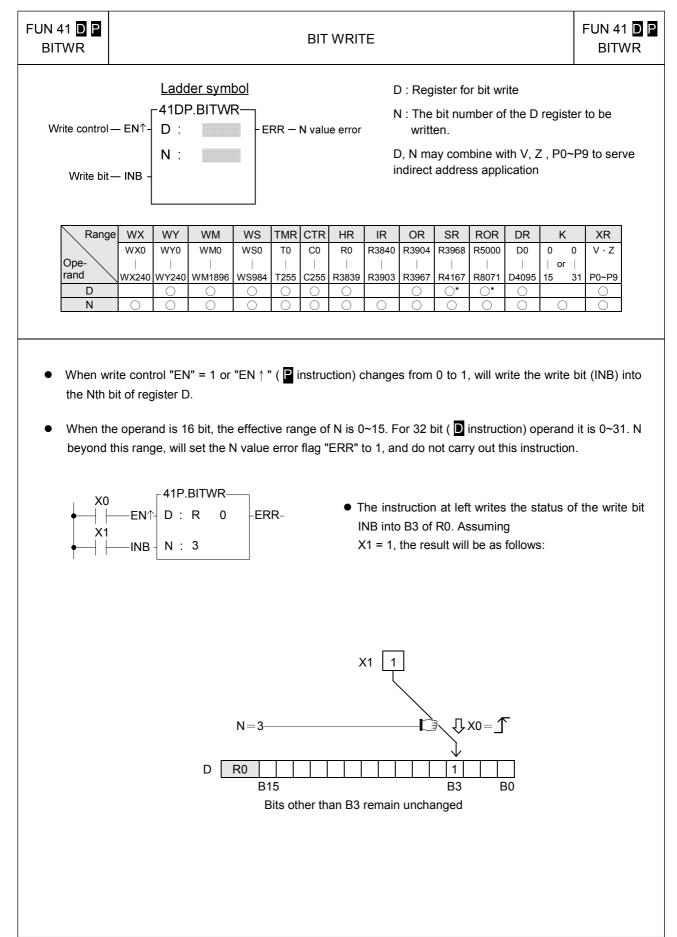
	[)
	High Byte	Low Byte
R10	00	CRC-Hi
R11	00	CRC-Lo

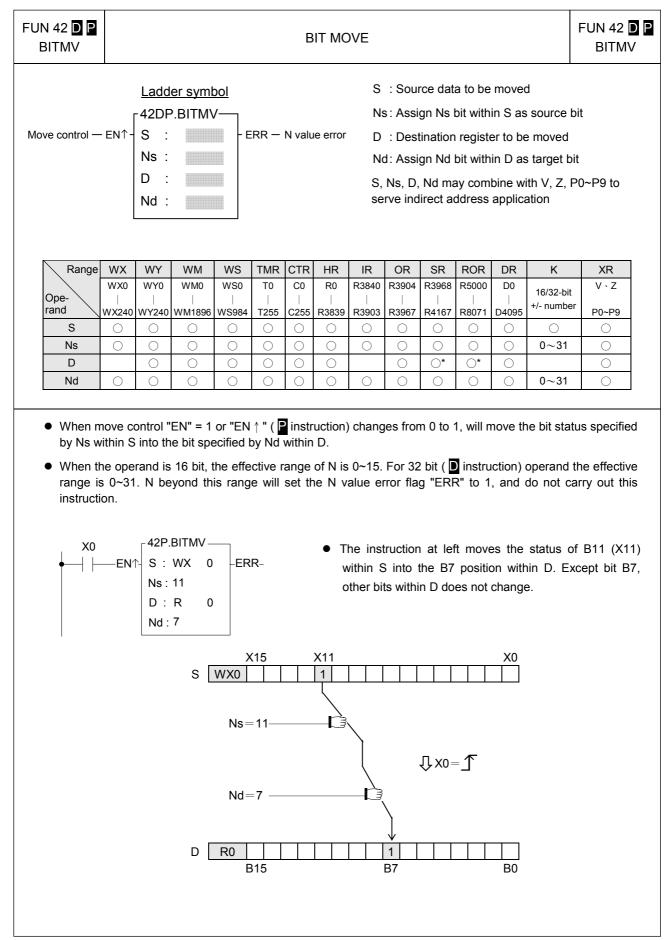
FUN32 CONVERTING THE RAW VALUE OF 4~20MA ANALOG INPUT FUN32 ADCNV ADCNV (ADCNV) Ladder symbol PI: 0, the polarity setting of analog input module is at unipolar 32.ADCNVposition Operation Control - EN PI : : 1, the polarity setting of analog input module is at bipolar S position 14/12 - Bit Selection - F/T Ν S: Starting address of source registers N: Quantity of conversion (In Word) D D: Starting address of destination registers S, N, D may associate with V \ Z \ P0~P9 index register to serve ROR Κ HR IR DR Range R3840 R0 R5000 D0 the indirect addressing application. Operand R3839 R3903 R8071 D4095 PI 0~1 S Ν 1~64 \cap D C ()*

- When the analog input is 4~20mA, the analog input module is one of the solution to get this kind of signal, but the input span of the analog input module is 0~20mA (Setting at 10V ⋅ Unipolar), however there will exist the offset of the raw reading value; this instruction is applied to eliminate the offset and convert the raw reading value into the range of 0~4095(12-bit) or 0~16383(14-bit), it is more convenient for following operation.
- When execution control "EN"=1, it will execute the conversion starting from S, length by N, and then store the results into the D registers.
- This instruction will not act if invalid length of N.
- When the input "F/T" =0, it assigns the 12-bit analog input module; while "F/T" =1, it assigns the 14-bit analog input module.

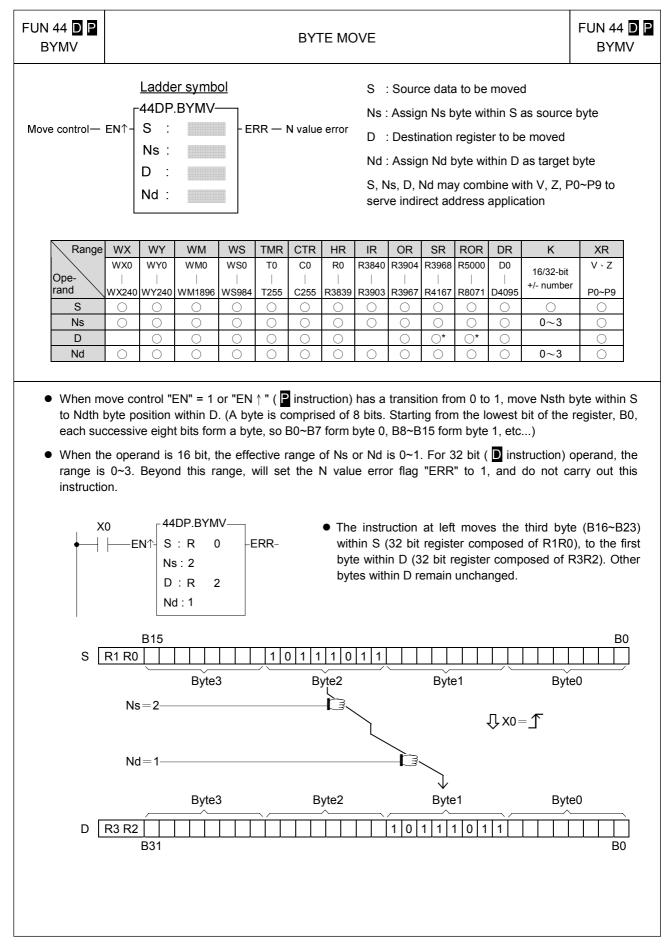
Example :

Description : When M0 is ON, it will perfom 6 points of conversion starting from R3840, where the offset of $4 \sim 20$ mA raw reading value will be eliminated, and the corresponding value $0 \sim 4095$ will be stored into R500 \sim R505.

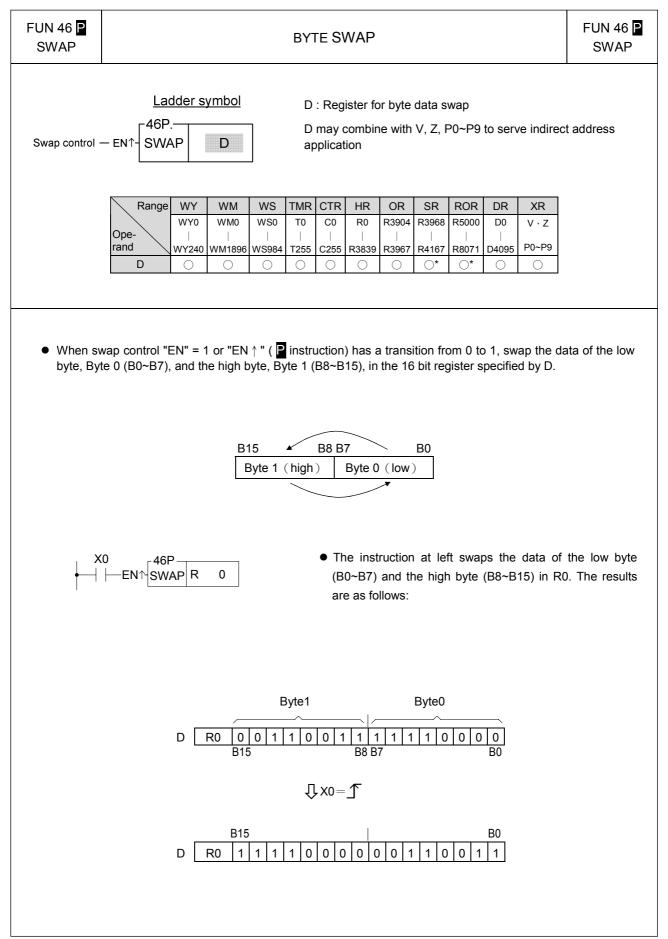

S			D		
R3840	-1229		R500	0	(4 mA)
R3841	409		R501	2047	(12 mA)
R3842	2047	⇒	R502	4095	(20 mA)
R3843	-2048	L-/	R503	0	(0 mA)
R3844	-2048		R504	0	(0 mA)
R3845	-2048		R505	0	(0 mA)


UN 35 XOI						ΕX	(CLU	SIVE	OR							N 35 D XOR
Operati	ion control -	— EN↑-		er syml P.XOR -		D=0 —	Resul	t as O	:	Sb:So D : Re Sa, St	ource d egister o, D n	lata b storin nay co	for exe lg XOF ombine	clusive clusive R result e with N oplicatio	or opei s √, Z, F	
ĺ	Range	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	К	XR	1
	Ope-	WX0 	WY0 	WM0	WS0	ТО 	C0 	R0	R3840	R3904	R3968	R5000	D0 	16/32bit +/-	V · Z	
-	rand Sa	WX240	WY240	WM1896	WS984	T255	C255	R3839	R3903	R3967	R4167	R8071	D4095	number	P0~P9)
ŀ	Sb	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	D		\bigcirc	\bigcirc	\bigcirc	0	0	\bigcirc		0	0*	0*	0		0	
	When ope XOR (exc correspond then set th After the o	lusive ding bits le corre	or) ope s of Sa spondii	eration of and Sb ng bit wit	of data (B0~B thin D	a Sa 315 or as 1, i	and S B0~B otherw	Sb. Th 31), a vise as	ne ope nd if b s 0.	eratior its at t	n of th he sar	nis fur ne pos	nction	is to o	compai	e the
	XOR (exc correspond then set th	lusive ding bits le corre	or) ope s of Sa spondir n, if all	and Sb ang bit wit the bits i (OR	of data (B0~B thin D	a Sa 315 or as 1, i	and S B0~B otherw	Sb. Th 31), a vise as set th • T	ne opend if b s 0. e 0 fla he ins	eratior its at t ig "D = tructio	n of th he sar = 0" to n at le	nis fur ne pos 1. ft mak	nction I sition I	is to o have di	compai fferent (OR op	e the

Ladder symbol Ser PXR B Ser P Ser P <th></th> <th>86 D P NR</th> <th></th> <th></th> <th></th> <th></th> <th>E</th> <th>XCLL</th> <th>JSIVE</th> <th>NOR</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>FUN 3 XI</th> <th>86 D NR</th>		86 D P NR					E	XCLL	JSIVE	NOR						FUN 3 XI	86 D NR
$\frac{y_{x240}}{y_{x240}} \frac{y_{yx20}}{y_{yx240}} \frac{y_{yx20}}{y_{yx20}} y_$	Operat	ion control ·	— EN↑	- 36D - Sa Sb	P.XNR :		D=0 —	Resu	lt as O	SI D Sa	o : Data : Reg a, Sb, I	a b for ister st D may	XNR c coring 2 combi	operatio XNR re ne with	on esults n V, Z, P(0∼P9 tc) serve
$\frac{y_{2}}{y_{2}} + \frac{y_{2}}{y_{2}} + \frac{y_{2}}{y_{2}} + \frac{y_{3}}{y_{2}} + \frac{y_{3}}{y$		Banga			10/04	MC	TMD	стр	ЦБ			00			K		1
$\frac{\log_{10}^{10}}{\log_{10}^{10}} \frac{\log_{10}^{10}}{\log_{10}^{10}} $		Range					-								1		
$\frac{1}{36} \frac{1}{36} \frac{1}{2} $																	
$\frac{Sb}{D} = \frac{1}{2} + 1$														_			-
• When operation control "EN" = 1 or "EN ↑" (\square instruction) changes from 0 to 1, will perform the logical XNR (inclusive or) operation of data Sa and Sb. The operation of this function is to compare the corresponding bits of Sa and Sb (B0~B15 or B1~B31), and if the bit has the same value, then set the corresponding bit within D as 1. If not then set it to 0. • After the operation, if the bits in D are all 0, then set the 0 flag "D=0" to 1. • The instruction at left makes a logical XNR operation of the R0 and R1 registers, and the results are stored in the R2 register. Sa $R0 \ 1 \ 0 \ 1 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1$			-		_	-			_	_	_	_		_	-		-
 When operation control "EN" = 1 or "EN↑" (instruction) changes from 0 to 1, will perform the logical XNR (inclusive or) operation of data Sa and Sb. The operation of this function is to compare the corresponding bits of Sa and Sb (B0-B15 or B1-B31), and if the bit has the same value, then set the corresponding bit within D as 1. If not then set it to 0. After the operation, if the bits in D are all 0, then set the 0 flag "D=0" to 1. The instruction at left makes a logical XNR operation of the R0 and R1 registers, and the results are stored in the R2 register. Sa R0 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 Q x0 = ∫ 														_	\cup		1
Sb R1 1 1 1 0 1 1 1 0 1 0 1 0 1 0 1 0 0 1 1 0 $\overline{1}$	•			oit withi	n D as ´	1. If not	then s	set it t	81~B3′ to 0.	I), and	if the	bit ha				-	
	•		operat X0	bit withi ion, if t −EN↑-	n D as ´ he bits i 36P.XNI Sa : R Sb : R	1. If not n D are R	then s all 0,	set it t	81~B33 to 0. set the	1), and 0 flag The ins of the F	if the "D=0" tructio R0 and	bit ha to 1. n at le R1 res	s the ft mak	same es a lo	value, th ogical XN	ien set IR oper	the


FUN 37 D P ZNCMP					ZO	NE C	OMP	ARE						FUN 3 ZN(
		Ladde	r symbo	bl					S	: Red	aister f	for zor	ne compa	arison	
			ZNCMF							-	-		value		
Dperation control –		S :			In	side zo	one					er limit			
		Su :			i U	iahort	han up	norlim	-						
		0				-	-		P				ibine wit irect add		
		OL .		- S <l< th=""><th>. — L</th><th>ower th</th><th>nan low</th><th>er limit</th><th>t a</th><th>pplicat</th><th>tion</th><th></th><th></th><th></th><th></th></l<>	. — L	ower th	nan low	er limit	t a	pplicat	tion				
				- ERF	₹ — L	imit val	lue erro	be							
	L														
Range	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	К	XR	7
	WX0	WY0	WM0	WS0	T0	C0	R0	R3840	R3904	R3968	R5000	D0	16/32-bit	V × Z	
Ope- rand	WX240	WY240	WM1896	WS984	T255	C255	 R3839	R3903	 R3967	 R4167	R8071	D4095	+/- number	P0~P9	
S	0	0	0	0	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		0	
SU SL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_
			0								-				
 When op limit SU inside zo 	and low	er limit	"EN" =	3 is bet	ween	the u	pper I	imit ar	nd the	lower	limit	(S∟≦S	S≦S _U), '	then set	t the
limit SU inside zo upper lim limit flag The uppe will set to	and low one flag " "S <l" er limit \$ 0 1, and $N \uparrow \begin{bmatrix} 37F\\S \\Su \end{bmatrix}$</l" 	ver limit "INZ" t S>U" to as 1. S _∪ shou	"EN" = t SL. If S to 1. If the o 1. If the uld be gr truction v IP	S is bet he value reater th will not Y Z(ween e of \$ of S i nan th carry	the u S is g s sma	pper I reater iller the er limi The i uppe value left, of th	imit ar than t en the t S _L . If nstruc er and es of F then t is diag	nd the the up lower f S _U <s ttion a lower R0~R2 he res gram.</s 	t left c limit z^{L} , the limit z^{L} are a sult can	imit S _U , the S_L , the ompared of the solution of the solu	$(S_{L} \leq S_{1})$, then en set the limit va formed wn in t be ob	S≦S _U), set the the lowe	then set higher fr than lo or flag "E of R0 wi and R2. ram at b as at the	t the than ower ERR" If the otton ⊋ righ
limit SU inside zo upper lim limit flag The uppe will set to	and low one flag " "S <l" er limit \$ 0 1, and $N \uparrow \begin{bmatrix} 37F\\S \\Su \end{bmatrix}$</l" 	rer limit "INZ" t S>U" to as 1. G _U shou this ins P.ZNCM : R : R	"EN" = t SL. If S to 1. If the o 1. If the uld be gr truction v IP	S is bet he value eater th will not Y Z(SR	ween le of S of S i nan th carry	the u S is g s sma ne low out.	pper I reater iller the er limi The i uppe value left, of th If wa NOT two o	imit ar than t en the t S _L . If nstrucer and es of F then the is diagont to g 'Y0 m output esult t	nd the the up lower f S _U <s ction a lower R0~R2 he res gram. get the nay be s S>U so Y0.</s 	t left c limit 2 t left c limit 2 are a sult can e statu	imit S_{\cup} mit S_{\cup} , the S_{\perp} , the ompa ompa cones T_{0} s show n then s of o , or an $S < L m_{0}^{2}$	$(S_L \le S_1)$, then en set limit variant formed within the ob- ut side in OR c	$S \leq S_U$), set the the lowe alue error d by R1 the diagonation obtained a	then set higher for than lo or flag "E of R0 wir and R2. ram at b as at the ne, then n betwee	t the than ower ERR" If the otton otton e righ

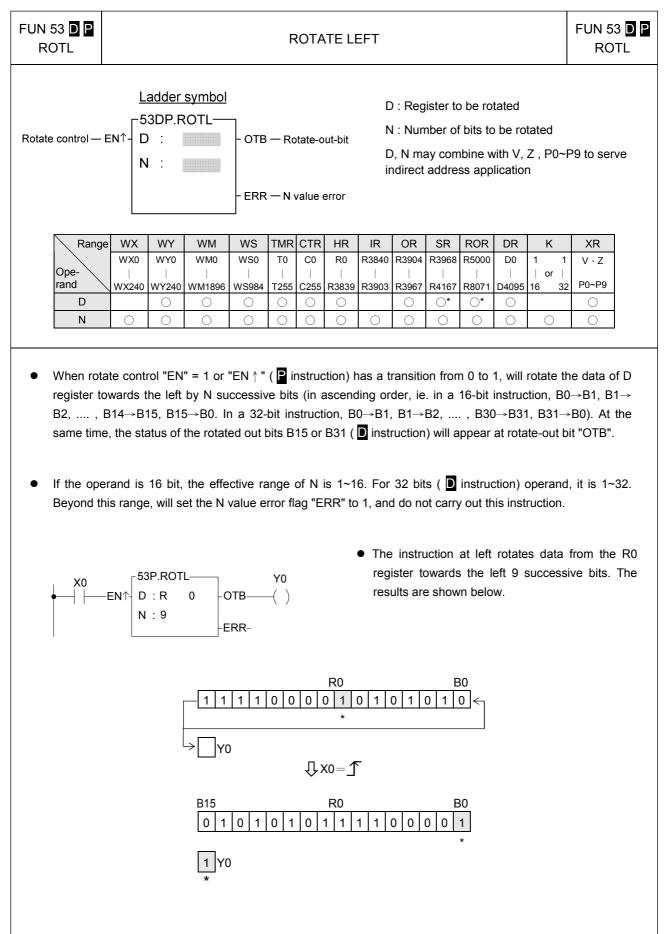
FUN 40 D P BITRD			BIT	REA	C						FUN 40 BITE	
Operation contro	Ladder I — EN↑- ^{40DP.B} S: N:	ITRD	⁻ — Outp R — N val		N S, in	: The N ma		nber o bine w	f the S ith V, J	Z, P0~P§	be read o	
Rang Ope- rand S N	WX WY WI WX0 WY0 WN WX240 WY240 WM1 O O O O O O	10 WS0 T0 896 WS984 T25	C0 5 C255	HR R0 R3839 ()	IR R3840 R3903 		SR R3968 R4167 	ROR R5000 R8071 	DR D0 D4095 ()	K 16/32-bit +/- numbe 0~31		
out , al • When selecte • When	read control "EN" = ad put it to the output read control "EN" = d to keep at the lass he operand is 16 bit nd this range will set $0 \qquad - EN^{-40P.BITR}$ N : 7	t bit "OTB". 0 or "EN ↑ " (state(if M1919 t, the effective et the N value e	instruc 9=0) or range fo	etion) i set to r N is "ERR The	s not c zero (0~15. " to 1, a instruc) (X0~	hange if M19 For 32 and do ction a	from (19=1) bit op o not ca t left r	D to 1, erand arry ou eads t	The c (D in It this i he 7th	output "O struction instruction	TB" can) it is 0∼3	be 31. rom
	s [X15 WX0 1 1 N=7	00	1 1 YC		_ <u></u>	0 1 J X0=		X0 0 1			



	3 D P MV						NIBE	BLE M	OVE						FUN 43 NBM
Move c	control — Et	N↑- S N↑- S N C	3DP.N 6 : Is :	<u>symbo</u> IBMV—	7	₹ — Ν	l value	error	N: D N: S;	s: Assi : Dest d: Assi Ns, D	gn Ns tinatio ign Nd), Nd n	nibble n regis nibble nay cor	ter to be within	S as sou e moved D as targ <i>v</i> ith V, Z,	rce nibble get nibble P0~P9 to
ſ	Range	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	к	XR
		WX0	WY0	WM0	WS0	то	C0	R0	R3840		R3968		D0	16/32-bit	V × Z
	Ope- rand	 WX240	 WY240	WM1896	 WS984	 T255	C255	 R3839	R3903	 R3967	 R4167	 R8071	 D4095	+/- number	P0~P9
	S	0	0	\bigcirc	0	\bigcirc	0	\bigcirc	0	0	0	0	0	\bigcirc	0
Ļ	Ns	\bigcirc	0	0	0	0	0	0	0	0	0	0	0	0~7	0
ŀ	D		0	0	0	0	0	0	\sim	0	O*	O*	0	0 -	0
L	Nd	0	0	0	0	\bigcirc	0	\bigcirc	\bigcirc	\cup	\bigcirc	\bigcirc	0	0~7	\bigcirc
	×0	–EN↑-	S : F Ns : 2 D : F	2	-ERR	-		(B8	8~B11) withir	n S to	the fir	st nibble		nibble NE 34~B7) with
			Nd : 1			-							B0		
				SR		NB:	 3	1 1 NB	0 1		31		В0 З0		
					Ns=2				È,						
									Ì			_			
					Nd=1				[[, mi		Û X0∶	=1		
					Nd=1	NB3	3	N	L 32	NI	/ B1		= ∫ B0		

FUN 45 D P XCHG					EXC	CHAN	IGE							FUN 45 D P XCHG
Exchange contr	ol — EN↑-	Ladder -45DP.X Da : Db :				Da Db Da ado		sei	ve indirect					
	Ran Ope- rand Da Db	nge WY WY0 WY240 O	WM WM0 WM1896	WS WS0 WS984 〇	Т0 	CTR C0 C2555 〇		1	R3968 	ROR R5000 R8071 _* _*	DR D0 D4095 O	XR V · Z P0~P9		
• When exchange control "EN" = 1 or "EN \uparrow " (instruction) has a transition from 0 to 1, will exchange contents of register Da and register Db in 16 bits or 32 bits (instruction) format. • The instruction at left exchanges the content 16-bit R0 and R1 registers.														
		Da Db			1 1		00 11	0 0 1 1	00	00	B(0 0 1 1)]		
		Da Db	R0				1 1 0 0	1 1 0 0	1 1 0 0		B0 1 1 0 0]		

FUN 47 UNIT	_					NI	BBL	E UNI	TE							JN 47 P UNIT
Unite cont	trol — El	۲47	:	-	- ERR -	— N va	alue e	rror	N : D : S, N	Starting Numbe Registe I, D ma rect ad	nited ata		serve			
	Range	e WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	К	XR	
		WX0	WY0	WM0	WS0	TO	C0	R0	R3840	R3904	R3968	R5000	D0	1	V × Z	
	Ope- rand	WX240	 WY240	 WM1896	 WS984	 T255	 C255	 R3839	 R3903	 R3967	 R4167	 R8071	 D4095	4	P0~P9	
	S	0	0	0	0	0	\bigcirc	\bigcirc	\bigcirc	0	0	0	0		0	
	N	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	D		0	0	0	\bigcirc	0	0		0	○*	○*	0		0	
			o not ca - 47P.UI	0		ructio	n.	The ir	nstructi	ion at l	eft take	es out	NB0 fr	rom 3	3 regist	ror flag ers, R0, in WY0
N=3 {	S S+1 S+2	R0 R1 R2	B15 B12	2B11 B8	B7 B4	4 B3 000 001 010	0				e not u	V Y 0	5个	\uparrow		
			NB3	NB2	NB1	NB	0			X0	= ♪ =∫					

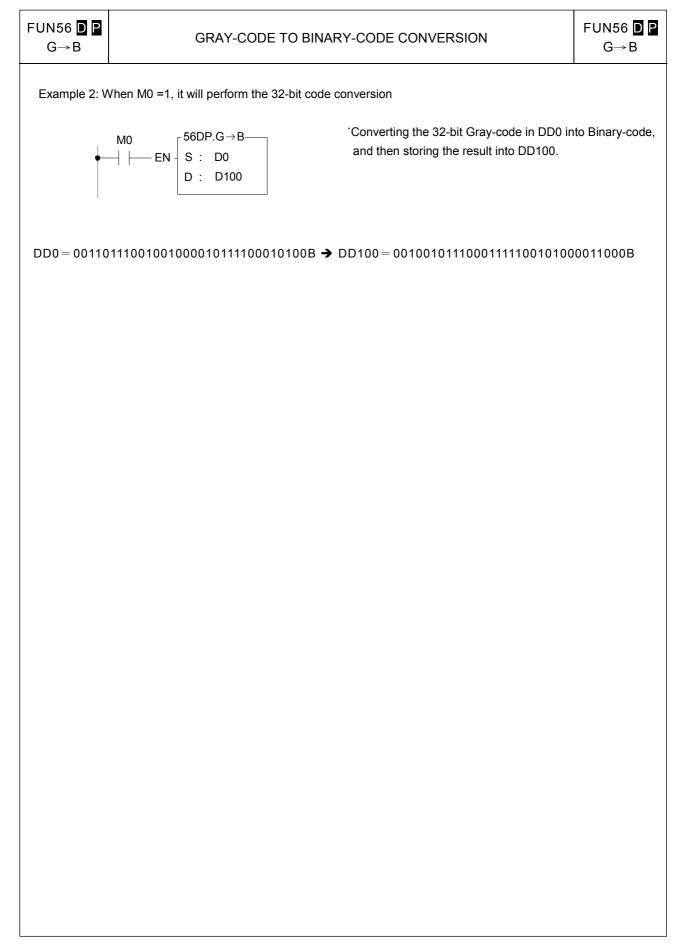

FUN 48 DIST						NIBE	BLE [DISTE	ribut	Ē						IN 48 P DIST
Ladder symbol Distribution control – EN↑ 48P.DIST S : ERR – N value error N : ERR – N value error D : Starting register storing distribution dates application S, N, D may combine with V, Z, PO-serve indirect address application Range WX WX WY WM WS TMR CTR HR IR OR SR ROR D : IR																
	Range												DR		XR]
	Ope-	WX0	WY0	WM0	WS0	T0	C0	R0	R3840	R3904	R3968	R5000	D0	16-bit +/-	V、Z	
	rand	WX240	WY240	WM1896	WS984	T255	C255	R3839	R3903	R3967	R4167	R8071	D4095		P0~P9	
	S	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_
	<u>N</u>	0	0	0	0	0	0	0	0	0	 *	 *	0	1~4	0	4
	D		\cup		\cup	\cup	\cup	0	Į	U	\cup	\cup		<u> </u>	0	L
 4 bits form a nibble, so B0~B3 form nibble 0, B4~B7 form nibble 1, etc) This instruction only provides WORD (16 bit) operand. Therefore there are usually only 4 nibbles can be involved, so the effective value of N is 1~4. Beyond this range, will set the N value error flag "ERR" to 1, and do not carry out this instruction. X0 X0 ER^+ ER^- S : WY 0 N : 3 C : R 0 The instruction at left writes NB0~NB2 from the WX0 register into the NB0 of the 3 consecutive registers R0~R2. 													1, and e WX0			
S	WX0	X15 0 0 0 NB3	X11 00 1 C NB2	N=: 00001 2 NB	000	B0	⇒ K0= <u>-</u>		→ [→D+′ →D+2	I R	B1 0 0 1 0 2 0	0 0 0 0 0 0 0 0 0	000	0 000	0 0 0 0	B0 01 10

FUN49 <mark>P</mark> BUNIT				BYTE U	JNITE				FUN49 BUNIT
Execution contr	ol — EN↑-	Ladder sy -49P.BUN S : N : D :		N : D : S, N	Number o Registers	of bytes to be to store the associate wit			
			Ran Ope- rand S N D	R0 R4 R3839 R4 R3839 R4	ROR DR 5000 D0 8071 D4099 O O O O O O O* O	K 5 1~256			
						changes from ults into D reg	n 0→1, it will gisters.	pertorn	n the byte
• When co	ruction wil	I not act if ir ting with int	nvalid rang elligent pe	e of length. ripheral in bi			nstruction may	be ap	plied to do
• When co	ruction wil	I not act if ir ting with int	nvalid rang elligent pe	e of length.			-	[,] be ap	plied to do
 When construct byte construction 	ruction wil ommunicat nbination f	I not act if ir ting with int or following 12	nvalid rang elligent pe	e of length. processing. T 500 999			-	be app	plied to do
 When ca byte con Example : Description : \ as 	when M2 of the signed by	I not act if ir ting with int or following 12 ├──EN↑- Changes fro R999, and	avalid rang elligent pe word data 49P.BUNI S : R 15 N : R 9 D : R 25 m 0→1, it then store	e of length. processing. T	nary data the byte c to register	format, this in ombination s starting from	nstruction may tarting from R ² n R2500.		
 When ca byte con Example : Description : \ as 	when M2 of the signed by	I not act if ir ting with int or following //2 /EN↑- changes fro R999, and ed R999=10	avalid rang elligent pe word data 49P.BUNI S : R 15 N : R 9 D : R 25 m 0→1, it then store , the result	e of length. ripheral in bin processing. T 500 999 500 : will perform	nary data the byte c to register	format, this in ombination s s starting fror ore into R250	nstruction may tarting from R^{γ} n R2500. 0 ~ R2504.		
 When ca byte con Example : Description : \ as 	When M2 of signed by is suppose	I not act if ir ting with int or following 12 ├──EN↑- Changes fro R999, and	avalid rang elligent pe word data 49P.BUNI S : R 15 N : R 9 D : R 25 m 0→1, it then store , the result	e of length. eripheral in bin processing. T 500 999 500 2 will perform the results in ts of combina	nary data the byte c to register	format, this in ombination s s starting fror ore into R250	nstruction may tarting from R ² n R2500.		
 When ca byte con Example : Description : \ as It 	when M2 of the suppose	I not act if ir ting with int or following 12 ↓ EN↑- Changes fro R999, and td R999=10	avalid rang elligent pe word data 49P.BUNI S : R 15 N : R 9 D : R 25 m 0→1, it then store , the result	e of length. processing. T 500 999 500 c will perform the results in ts of combina e	nary data the byte c to register	format, this in ombination s s starting fror ore into R250	nstruction may tarting from R ⁻ n R2500. 0~R2504. D		
 When ca byte con Example : Description : \ as It 	When M2 of the signed by R1500 D	I not act if ir ting with int or following 12 ├──EN↑- Changes fro R999, and cd R999=10 S h Byte	avalid rang elligent pe word data 49P.BUNI S : R 15 N : R 9 D : R 25 m 0→1, it then store , the result Low Byt	e of length. ripheral in bin processing. T 500 999 500 will perform the results in ts of combina e	nary data the byte c to register tion will st R2500 R2501	format, this in ombination s s starting fror ore into R250 High Byte	nstruction may tarting from R ² n R2500. 0~R2504. D Low Byte		
 When ca byte con Example : Description : \ as It 	When M2 of the signed by R1500 D R1501 D R1502 D	I not act if ir ting with int or following 12 12 12 12 12 12 12 12 12 12 12 12 12	avalid rang elligent pe word data 49P.BUNI S : R 15 N : R 25 D : R 25 m 0→1, it then store , the result Low Byt Byte-0 Byte-1 Byte-2	e of length. processing. T 500 999 500 c will perform the results in ts of combina e	nary data the byte c to register tion will st R2500 R2501 R2502	format, this in ombination s s starting fror ore into R250 High Byte Byte-0 Byte-2 Byte-4	nstruction may tarting from R ² n R2500. 0~R2504. D Low Byte Byte-1 Byte-3 Byte-5		
 When ca byte con Example : Description : \ as It 	When M2 of Arrow Struction will a signed by a signed b	I not act if ir ting with int or following 12 ↓ EN↑- Changes fro R999, and ed R999=10 son't care on't care on't care on't care	avalid rang elligent pe word data 49P.BUNIS : R 15N : R 9D : R 25m 0→1, itthen store, the resultLow BytByte-0Byte-1Byte-2Byte-3	e of length. processing. T 500 999 500 will perform the results in ts of combina e	nary data the byte c to register tion will st R2500 R2501 R2502 R2503	format, this in ombination s s starting from ore into R250 High Byte Byte-0 Byte-2 Byte-4 Byte-6	tarting from R ² n R2500. 0 ~ R2504. D Low Byte Byte-1 Byte-3 Byte-5 Byte-7		
 When ca byte con Example : Description : \ as It 	When M2 of Average Ave	I not act if ir ting with int or following //2 /EN^- // changes fro R999, and ed R999=10 // son't care // on't care // on't care // on't care // on't care // on't care // on't care // on't care // on't care	avalid rang elligent pe word data 49P.BUNI S : R 15 N : R 9 D : R 25 D : R 25 m 0→1, it then store , the result <u>Low Byte</u> <u>Byte-0</u> <u>Byte-1</u> <u>Byte-3</u> <u>Byte-4</u>	e of length. ripheral in bin processing. T	nary data the byte c to register tion will st R2500 R2501 R2502	format, this in ombination s s starting fror ore into R250 High Byte Byte-0 Byte-2 Byte-4	nstruction may tarting from R ² n R2500. 0~R2504. D Low Byte Byte-1 Byte-3 Byte-5		
 When ca byte con Example : Description : \ as It 	ruction will ommunicat nbination for M M M M M M M M M M M M M M M M M M M	I not act if ir ting with int or following 12 ↓ EN↑- Changes fro R999, and ed R999=10 S h Byte on't care on't care	avalid rang elligent pe word data 49P.BUNI S : R 15 N : R 25 D : R 25 D : R 25 m 0→1, it then store , the result <u>byte-0</u> <u>Byte-0</u> <u>Byte-1</u> <u>Byte-2</u> <u>Byte-3</u> <u>Byte-4</u> <u>Byte-5</u>	e of length. processing. T 500 999 500 c will perform the results in ts of combina e	nary data the byte c to register tion will st R2500 R2501 R2502 R2503	format, this in ombination s s starting fror ore into R250 High Byte Byte-0 Byte-2 Byte-4 Byte-6	tarting from R ² n R2500. 0 ~ R2504. D Low Byte Byte-1 Byte-3 Byte-5 Byte-7		
 When ca byte con Example : Description : \ as It 	ruction will ommunicat nbination for M When M2 of ssigned by is suppose R1500 D R1501 D R1502 D R1503 D R1503 D R1505 D R1505 D R1506 D	I not act if ir ting with int or following 12 ↓ EN↑- Changes fro R999, and changes fro changes fro R999, and changes fro R990, and changes fro R990, and changes fro R990, and changes fro R990, and changes fro R990, and changes fro Changes fro R990, and changes fro R990, and changes fro R900, and changes fro R900, and changes fro R900, and changes fro R900, and changes fro Changes	avalid rang elligent pe word data 49P.BUNI S : R 15 N : R 25 D : R 25 m 0→1, it then store , the result <u>Low Byte</u> <u>Byte-1</u> <u>Byte-2</u> <u>Byte-3</u> <u>Byte-5</u> <u>Byte-6</u>	e of length. processing. T 500 999 500 will perform the results in ts of combina e	nary data the byte c to register tion will st R2500 R2501 R2502 R2503	format, this in ombination s s starting fror ore into R250 High Byte Byte-0 Byte-2 Byte-4 Byte-6	tarting from R ² n R2500. 0 ~ R2504. D Low Byte Byte-1 Byte-3 Byte-5 Byte-7		
 When ca byte con Example : Description : \ as It 	ruction will ommunicat nbination for Notestigned by is suppose R1500 D R1501 D R1502 D R1503 D R1504 D R1505 D R1506 D R1506 D R1507 D	I not act if ir ting with int or following 12 ↓ EN↑- Changes fro R999, and ed R999=10 S h Byte on't care on't care	avalid rang elligent pe word data 49P.BUNI S : R 15 N : R 25 D : R 25 D : R 25 m 0→1, it then store , the result <u>byte-0</u> <u>Byte-0</u> <u>Byte-1</u> <u>Byte-2</u> <u>Byte-3</u> <u>Byte-4</u> <u>Byte-5</u>	e of length. processing. T 500 999 500 will perform the results in ts of combina e	nary data the byte c to register tion will st R2500 R2501 R2502 R2503	format, this in ombination s s starting fror ore into R250 High Byte Byte-0 Byte-2 Byte-4 Byte-6	tarting from R ² n R2500. 0 ~ R2504. D Low Byte Byte-1 Byte-3 Byte-5 Byte-7		

FUN50 P BDIST		BYTE DISTRIBUTE			FUN50 P BDIST
Execution contro	Ladder symbol I — EN↑- S : N : D :	N : Number of b D : Registers to S, N, D may asso	ytes to be distri store the distrib	buted buted data P0~P9 index re	
	Ope ranc		K 1~256		
		r "EN ↑ "(P instruction)ch y N, and then store the results			orm the byte
This inst	ruction will not act if invalid	range of length.			
	ommunicating with intelliger ribution for data transmissic	nt peripheral in binary data fo on ∘	ormat, this instr	uction may be a	applied to do
Example :					
		BDIST			
	●	R 1000			
	N : I	R 999			
	D : F	R 1500			
Description : \	When M2 changes from 0-	→1, it will perform the byte di	stribution starti	na from R1000	the length is
	•	store the results into registers		•	, · · · · · · ·
		sults of distribution will store i	-		
	S Llich Duto	Duto	D Lliab Duto		
	High Byte Low 1000 Byte-0 Byte		High Byte 00	Low Byte Byte-0	
	1000 Byte-0 Byte 1001 Byte-2 Byte		00	Byte-0 Byte-1	
	1002 Byte-4 Byte		00	Byte-2	
	1003 Byte-6 Byte		00	Byte-3	
	1004 Byte-8 Don't		00	Byte-4	
		R1505	00	Byte-5	
		R1506	00	Byte-6	
		R1507	00	Byte-7	
		R1508	00	Byte-8	

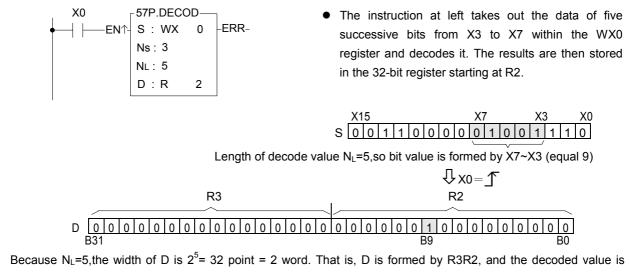
	N 51 D P SHFL						SHI	FT LE	FT						FUN 51 SHF	
	ift control — Shift in bit —	EN↑-		r symbo SHFL—	- OT	в — s R — N			N N	l : Nur I, D m	nber o ay con	o be sh f bits to nbine v ss app	o be sh vith V,	Z, P0~P	9 to serve	
	Range Ope- rand D	WX WX0 WX240	WY WY0 WY240	-	WS WS0 WS984	T0 T255		R0 R3839	IR R3840 R3903	-	SR R3968 R4167		DR D0 D4095	K 1 1 or 16 32	P0~P9	
	N	0	0	0	0	0	0	0	0	0	0* 0	0* 0	0	0	0	
•	If the ope Beyond th X0		ge, will [^{51P.§}	Set the N SHFL		error f Y		ERR" to The tow	o 1, an e instr	d do n uction he lefi	ot carr at let	ry out t ft shift	his ins s the	truction. data in	l, it is 1~3 register e results	R0
			Y0	B15 ← 0 0) 1 1 *	0		R0 0 1	1 1	1 0	0 0	30 0 ←	INB 1			
			Y0 1 *	B15 0 C) 1 0	1	1 1	R0	TT	01	<u>1</u> 1 △ △	B0 1 △	INB 1			

N : D, N may combine with V, Z, indirect address application Shift in bit – INB - - ERR – N value error													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
	XR 1 V · Z												
rand WX240 WY240 WM1896 WS984 T255 C255 R3839 R3967 R4167 R8071 D4095 16 D <td< th=""><th>32 P0~P9</th></td<>	32 P0~P9												
N 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0												
register towards the right by N successive bits (in descending order). After the highest bits, E instruction) have been shifted right, their positions will be replaced by the shift-in bit INB, where B0 will appear at shift-out bit "OTB". • If the operand is 16 bit, the effective range of N is 1~16. For 32 bits () instruction) operates Beyond this range, will set the N value error flag "ERR" to 1, and do not carry out this instruction at left shifts the date towards the right by 15 successive of N is 15 are shown below. • The instruction at left shifts the date towards the right by 15 successive of N is 10 and 0 are shown below. INB B15 R0 V0	ile shift-out bit nd, it is 1~32. n. a in R0 register												
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \bigg } \\ \bigg \\ \bigg } \\ \bigg $ \\ \bigg $ I \\													



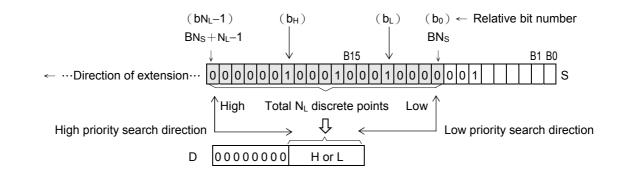
FUN 54 D P ROTR					R	ТАТС	E RIG	ЭНТ						FUN 54 D ROTR			
Rotate control — EN↑- D : - OTB — Rotate-out-bit N : N : D, ind - ERR — N value error Range WX WY WM WS TMR CTR HR IR 0											D : Register to be rotated N : Number of bits to be rotated D, N may combine with V, Z, P0~P9 to se indirect address application						
Rang Ope- rand D N	WX0		WM0	WS WS0 WS984 O		C0	HR R0 R3839 () ()	R3840				DR D0 D4095 ()	or	XR 1 V · Z 2 P0~P9 0			
D registe B14→B1 the same If the op	er toward 3, , l e time, th erand is	ds the B1→B(ne stati s 16 bi	right by N D, B0 \rightarrow B us of the r	N succe 15. In a rotated ective r	essive 32-bi out B(bits (in t instru) bits v of N is	n desc uction, will app s 1~16 RR" to	ending B31→ bear at 5. For 1, and	g orden B30, I t the ro 32 bit I do no	r, ie. ir B30→ otate-o s (D ot carry	n a 16 B29, . ut bit ' instrue v out th	-bit ins , B1 'OTB''. ction) his inst	structior I→B0, I operanc truction.	ne bit data of ı, B15→B14, 30→B31). At d, it is 1~32. n R0 register			
	0 EN			-OTE -ERF	3(Û.X	t s R0	oward shown	s the i below	right 8				e results are			
			*							YO	_						

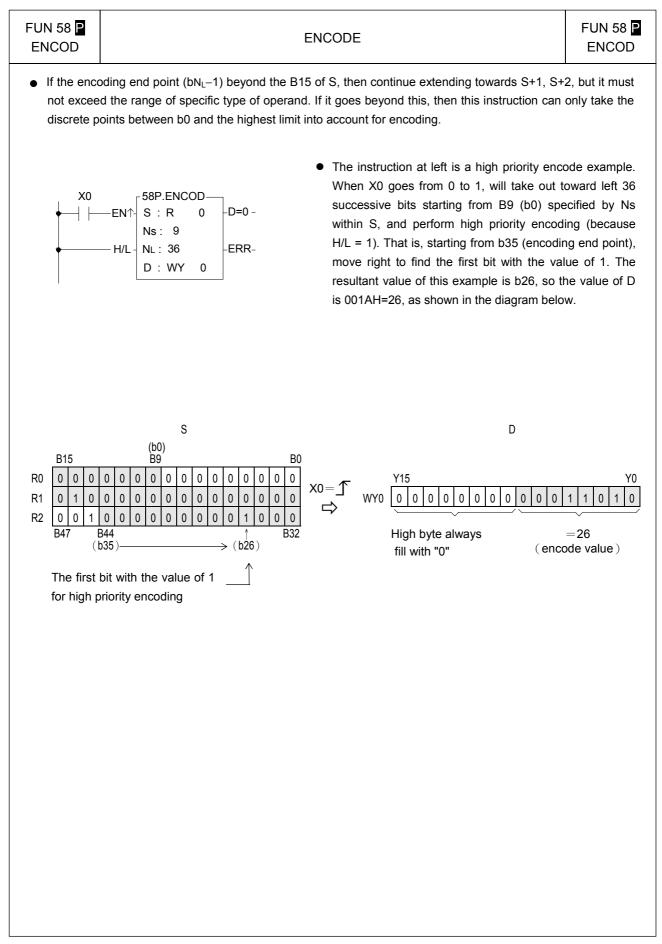
FUN55 D P B→G		BINA	ARY-COE	ΟΕ ΤΟ Ο	GRAY-	COD	E COI	NVER	SION			Fl	JN55 D P B→G
Operation cor	ntrol — EN1	ſ ^{55DP.}	er symbol B→ G —			destina		20∼P9 for					
Ope- rand w	WX WY VX0 WY0 X240 WY240 O O	WM WM0 WM1896	WS TM WS0 T WS984 T2	0 C0 55 C255	HR R0 R3839 ()		OR R3904 R3967 			DR D0 - D4095 〇	K 0~FFI 0~FFFFI C	FFH FFFFH	XR V ⋅ Z P0~P9 ○
• The conv	operation co on; where a version me XOR XOR 0 0 0	S is the so thod show	ource (Bina vn as belov	ary code w R XOR 0 0), and [XOR 0	D is the	e desti	nation	(Gray	code)		ing th	e result.
Example 1: Wh	M0 │	-55P.B→ - S : R(D : R	9G 0 100		•	Conve Gray-c	erting tl code, a	he 16-	bit Bin	-	de in R(100.


FUN55 D P B→G	BINARY-CODE TO GRAY-CODE CONVERSION	FUN55 D P B→G
Example 2: V	Vhen M0 =1, it will perform the 32-bit code conversion	
	M0 $ =$ $=$ EN $\begin{bmatrix} 55DP.B \rightarrow G \\ S : R0 \\ D : R100 \end{bmatrix}$ • Converting the 32-bit Binary-code in DR0 Gray-code, and then storing the result interval of the storing the result interval of the storing the result interval of the storing t	
DR0=0011	011100100100010111100010100B → DR100=001011001011011000111000	10011110B

FUN56 D P G→B		GRA	Y-COD	Е ТО В	INARY	-CODE	ECON	IVER	SION				N56 D P G→B
Operation cont	rol — EN↑·	Ladder s 56DP.G- S : D :	-		[S : Sta D : Sta S , D addres	arting a operai	address	s of de			P0~P9) for index
Cope- rand S D	WX WY WX0 WY I I WX240 WY2 Image:	0 WM0 40 WM1896	WS0		0 R0 55 R3839		OR R3904 R3967 			DR D0 D4095 O	K 0~FFF 0~FFFFF	FH	XR V \ Z P0~P9 O
convers result.	sion; wher	control "Ef	e source	e (Gray i									
	0 0 +0⁸ +0¹ 1 1	1 1 R 10 1 1 1 1 1 1 1 1	0 40 1	0 <u>8</u> <u>1</u> 1	0 1	-	1 1 1	1 408 0	0 40 % 0	1 +0 1	1 * • • • • • • • • • • • • • • • • • • •	0 10^R 0	1 ↓ 1
Example 1: W	M0	hanges froi 56P.G ⁻ N↑- S : D D : D	→B		.(ting the	e 16-bi	t Gray-		in D0 into 00.	o Binar	y-code,
D0=10010	10101010	0011B →	D100=	111001	100110	00108	3						

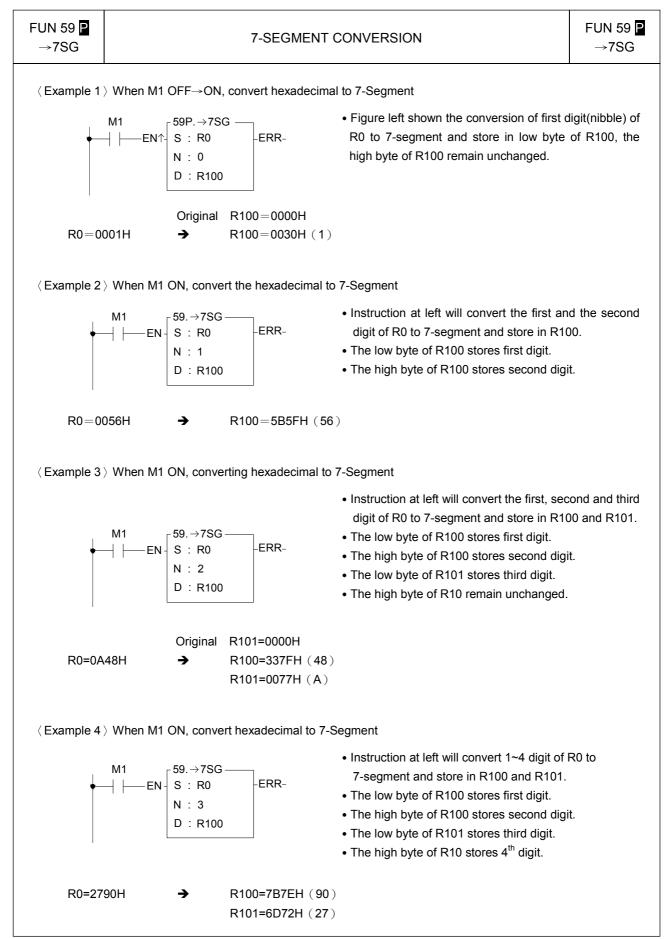
FUN 57 P DECOD		DECODE												FUN 57 DECC	
Ladder symbol Decode control — EN↑ - S : Ns : N L : D :						₹ — Ra	inge err	or	 S : Source data register to be decoded (16 bits) N_S : Starting bits to be decoded within S N_L : Length of decoded value (1~8 bits) D : Starting register storing decoded results (2~256 points = 1~16 words) S, N_S, N_L, D may combine with V, Z, P0~P9 to serve indirect address application 						
Range	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	к	XR	
Ope- rand	WX0 WX240	WY0 WY240	WM0 WM1896	WS0 WS984	T0 T255	C0 C255	R0 R3839	R3840 R3903	R3904 R3967	R3968 R4167	R5000 R8071	D0 D4095	16-bit +/- number	V ∖ Z P0~P9	
S	0	0	0	0	\bigcirc	\bigcirc	0	0	0	0	0	\bigcirc	0	0	
Ns	0	0	0	\bigcirc	\bigcirc	\bigcirc	0	0	0	0	0	0	0~15	0	
NL	0	0	0	0	0	0	0	0	0	0	0	0	1~8	0	1
D		\circ	0	0	0	0	0		\bigcirc	○*	*	\bigcirc		0	1


- This instruction, will set a single bit among the total of 2^{NL} discrete points (D) to 1 and the others bit are set to 0. The bit number to be set to 1 is specified by the value comprised by $BN_S \sim BN_S + N_L 1$ of S (which is called the decode value, BN_S is the starting bit of the decode value, and $BN_S + N_L 1$ is the end value),.
- When decode control "EN" = 1 or "EN ↑ " (p instruction) has a transition from 0 to 1, will take out the value BN_S~BN_S+N_L-1 from S. And with this value to locate the bit position and set D accordingly, and set all the other bit to zero
- This instruction only provides 16 bit operand, which means S only has B0~B15. Therefore the effective range of Ns is 0~15, and the N_L length of the decode value is limited to 1~8 bits. Therefore the width of the decoded result D is 2^{1-8} points = 2~256 points = 1~16 words (if 16 points are not sufficient, 1 word is still occupied). If the value of N_S or N_L is beyond the above range, will set the range-error flag "ERR" to 1, and do not carry out this instruction.
- If the end bit value exceeds the B15 of S, then will extend toward B0 of S + 1. However if this occurs then S+1 can't exceed the range of specific type of operand (ie. If S is of D type register then S+1 can't be D3072). If violate this, then this instruction only takes out the bits from starting bit BNs to its highest limit as the decode value.


01001=9, therefore B9 (the 10th point) within D is set to 1, and all other points are 0.

FUN 58 PEENCODE														FUN 58 P ENCOD	
Encode control — EN↑ S S											encodin ete points encodin V, Z, P0	s (2~256) g results			
Range	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	К	XR	
	WX0	WY0	WM0	WS0	то	C0	R0	R3840	R3904	R3968	R5000	D0	16-bit	1	
Ope- rand			WM1896	WS984	 	 C255	 R3839	R3903	R3967	 R4167	 R8071	 D4095	+/- number	V \ Z P0~P9	
•													+/-		
rand	 WX240	 WY240	WM1896	 WS984	 T255	 C255	 R3839	 R3903	R3967	 R4167	 R8071	 D4095	+/-	P0~P9	
rand S	 WX240	 WY240	WM1896	US984	 T255	 C255	 R3839	 R3903	 R3967	 R4167	 R8071	 D4095	+/- number	P0~P9	

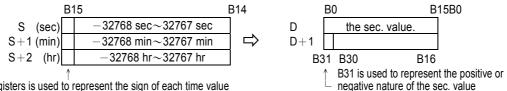
When encode control "EN" = 1 or "EN ↑" (instruction) has a transition from 0 to 1, will starting from the points specified by Ns within S, take out towards the left (high position direction) N_L number of successive bits BN_S~BN_S+N_L-1 (BN_S is called the encoding start point, and its relative bit number is b0;BN_S+N_L-1 is called the encoding end point, and its relative bit number is BN_L-1). From left to right do higher priority (when H/L=1) encoding or from right to left do lower priority (when H/L=0) encoding (i.e. seek the first bit with the value of 1, and the relative bit number of this point will be stored into the low byte (B0~B7) of encoded resultant register D, and the high byte of D will be filled with 0.



- As shown in the diagram above, for high priority encoding, the bit first to find is b_H (with a value of 12), and for low priority encoding, the bit first to find b_L (with a value of 4). Among the N_L discrete points there must be at least one bit with value of 1. If all bits are 0, will not to carry out this instruction, and the all zero flag "D=0" will set to 1.
- Because S is a 16-bit register, Ns can be 0~15, and is used to assign a point of B0~B15 within S as the encoding start point (b0). The value of N_L can be 2~256, and it is used to identify the encoding end point, i.e. it assigns N_L successive single points starting from the start point (b0) towards the left (high position direction) as the encoding zone (i.e. $b0 \sim bN_L-1$). If the value of Ns or NL exceeds the above value, then do not carry out this instruction, and set the range-error flag "ERR" as 1.

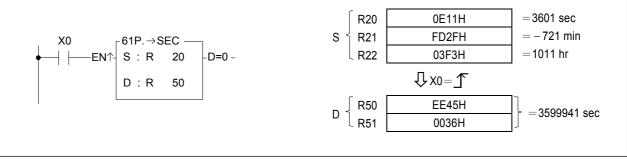
FUN 59 ₽ →7SG 7-SEGMENT CONVERSION														FUN 59 <mark>P</mark> →7SG
		59	. <u>adder s</u> 9P.→ 78	•	-	S : Source data to be converted								
Conversion control — EN↑- S : N :						- ERR — N value error N : The nibble number within S fo D : Register storing 7-segment re								
					6, N, D ndirect a	•			Z,P0~P	9 to serve				
Range	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	К	XR
Ope- rand	WX0 WX240	WY0 WY240	WM0 WM1896	WS0 WS984	T0 T255	C0 C255	R0 R3839	R3840 R3903		R3968 R4167	R5000 R8071	D0 D4095	16-bit +/- number	V · Z P0~P9
S	\bigcirc	\bigcirc	0	0	\bigcirc	\bigcirc	0	0	\bigcirc	\bigcirc	0	0	0	0
N	0	\bigcirc	0	0	\bigcirc	\bigcirc	0	0	0	0	0	0	0~3	0
D		\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc		\bigcirc	*	O*	\bigcirc		0

- When conversion control "EN" = 1 or "EN ↑" (instruction) has a transition from 0 to 1, will convert N+1 number of nibbles (A nibble is comprised by 4 successive bits, so B0~B3 of S form nibble 0, B4~B7 form nibble 1, etc...) within S to 7-segment code, and store the code into a low byte of D (High bytes does not change). The 7 segment within D are put in sequence, with "a" segment placed at B6, "b" segment at B5,, "g" segment at B0. B7 is not used and is fixed as 0. For details please refer the "7-segment code and display pattern table" shown in page 9-31.
- Because this instruction is limited to 16 bits, and S only has 4 nibbles (NB0~NB3), the effective range of N is 0~3. Beyond this range, will set the N value flag error "ERR" to 1, and does not carry out this instruction.
- Care should be taken on total nibbles to be converted is N+1. N=0 means one digit to convert, N=1 means two digits to convert etc...
- When using the FATEK 7-segment expansion module(FBs-7SG) and the FUN84 (7SEG) handy instruction for mixing decoding and non-decoding application, FUN59 and FUN84 can be combined to simplify the program design.(Please refer the example in chapter 16)

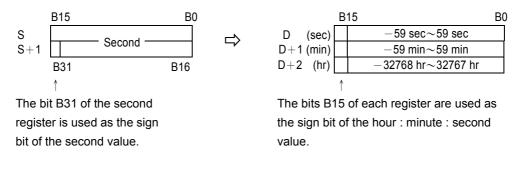


FUN 59 ₽ →7SG		7-SEGMENT CONVERSION											
Nibble da	ita of S	- 7-segment			1	_ow by	rte of D)			Display		
Hexadecimal number	Binary number	display format	B7 ●	B6 a	B5 b	B4 c	B3 d	B2 e	B1 f	B0 g	Display pattern		
0	0000		0	1	1	1	1	1	1	0			
1	0001		0	0	1	1	0	0	0	0	0 0		
2	0010		0	1	1	0	1	1	0	1			
3	0011		0	1	1	1	1	0	0	1			
4	0100	B6 a	0	0	1	1	0	0	1	1	Ļ		
5	0101	B1 f b B5	0	1	0	1	1	0	1	1	5		
6	0110	B2 e c B4 d B3 P B7	0	1	0	1	1	1	1	1	6		
7	0111	вз С	0	1	1	1	0	0	1	0			
8	1000		0	1	1	1	1	1	1	1			
9	1001		0	1	1	1	1	0	1	1			
А	1010		0	1	1	1	0	1	1	1	A		
В	1011		0	0	0	1	1	1	1	1			
С	1100		0	1	0	0	1	1	1	0			
D	1101		0	0	1	1	1	1	0	1			
E	1110		0	1	0	0	1	1	1	1	Ē		
F	1111		0	1	0	0	0	1	1	1	F		

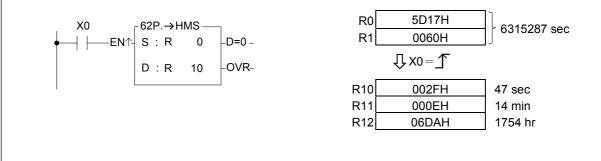
UN 60 →AS		ASCII CONVERSION FUN 60 →ASC											
Conve	rsion contro	I — EN↑	_ ^{60P.} →	er symb > ASC-		S : Alphanumerics to be converted into ASCII code D : Starting register storing ASCII results							
	Range Ope- rand S D	WY WY0 WY240	WM WM0 WM1896	WS WS0 - WS984	TMR T0 T255	CTR C0 C255	HR R0 R3839	OR R3904 R3967	SR R3968 R4167	ROR R5000 R8071	DR D0 D4095	Alphanum 1~12 alphanum	:
а	Vhen conv Ilphabets a	nd num	bers stor	ed in S	(S has	s a ma	ximum	of 12 al	phanun	neric ch	aracter) into ASC	
a it T u		nd numl ers start tion of tl conditi	bers store ing from nis instru ons occu	ed in S D. Each ction, m ur, then	(S has n 2 alp nost of conve	s a ma hanum ten, sto erts thi	ximum heric cha bres alp s alpha	of 12 al aracters hanum	phanun s occup eric info	neric ch y one 10 ormatior	aracter 6-bit reg n within) into ASC gister. a progran	CII and sto n, and wa
a it T u	Iphabets a into regista he applica intil certain external dis	nd numi ers start tion of ti conditi play dev EN↑- S	bers store ing from nis instru ons occu	ed in S D. Each ction, m ur, then ch can a	(S has a 2 alp nost of conve accept	s a ma hanum ten, sto erts thi	vimum heric cha bres alp s alpha code. • Tl -/	of 12 al aracters hanum numeri ne inst	phanun s occup eric info c inforn ruction F into A	neric ch y one 1 prmatior nation i at left	aracter 6-bit reg n within nto AS) into ASC gister. a progran	CII and sto n, and wa onveys it 6 alphab


FUN 6 →SE	_	HOUR:MINUTE:SECOND TO SECONDS CONVERSION \rightarrow SEC													
Convers	Ladder symbol S : Starting calendar data register to b Conversion control – EN^{\uparrow} - S : D : D :											o be			
	Range	wX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	К	
		WX0	WY0	WM0	WS0	Т0	C0	R0	R3840	R3904	R3968	R5000	D0	-11796839	Э
	Ope-	W/X240	W/V240	WN1906	W6004	T255	0255	02020		D2067	D4167	D9071	04005	117064700	
	rand WX240 WY240 WM1896 WS984 T255 C255 R3839 R3903 R3967 R4167 R8071 D4095 117964799											-			
	S O O O O O O O O O O O O O														
	$\mathbf{D} \qquad \bigcirc \qquad $														

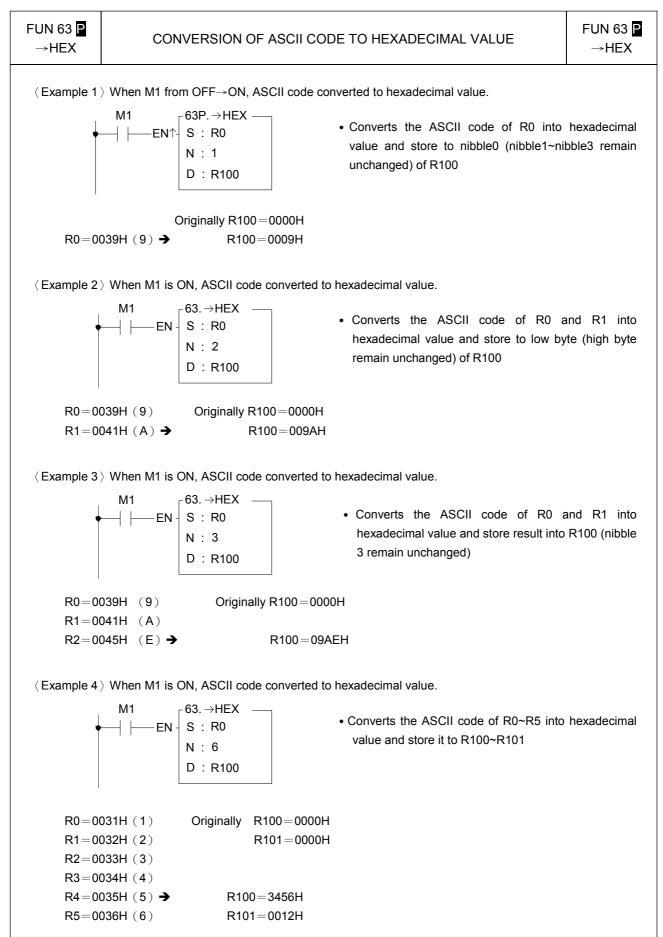
- When conversion control "EN" = 1 or "EN ↑ " (P instruction) has a transition from 0 to 1, will convert the hour: minute: second data of S~S+2 into an equivalent value in seconds and store it into the 32-bit register formed by combining D and D+1. If the result = 0, then set the "D = 0" flag as 1.
- Among the FBs-PLC instructions, the hour: minute: second time related instructions (FUN61 and 62) use 3 words of register to store the time data, as shown in the diagram below. The first word is the second register, the second word is the minute register, and finally the third word is the hour register, and in the 16 bits of each register, only B14~B0 are used to represent the time value. While bit B15 is used to express whether the time values are positive or negative. When B15 is 0, it represents a positive time value, and when B15 is 1 it represents a negative time value. The B14~B0 time value is represented in binary, and when the time value is negative, B14~B0 is represented with the 2's complement. The number of seconds that results from this operation is the result of summation of seconds from the three registers representing hours: minutes: seconds.



The B15 of each registers is used to represent the sign of each time value


- Besides FUN61 or 62 instruction which treat hour: minute: second registers as an integral data, other instructions treat it as individual registers.
- The example program at below converts the hour: minute: second data formed by R20~R22 into their equivalent value in seconds then stored in the 32-bit register formed by R50~R51. The results are shown below.

FUN 6 →HN	_			SEC	OND-	∍HOI	UR :	MINU	TE : S	SECO	ND			ł	FUN 62 ₽ →HMS
$\begin{array}{c} \underline{Ladder \ symbol} \\ Conversion \ control \ - EN^{+} \\ S \ : \\ D \ : \\ \hline D \ : \\ \hline OVR \ - Over \ range \end{array} \qquad S \ :Starting \ register \ of \ second \ to \ be conversion \ (hour \ : minute \ : second \ red \ second \ : \\ \hline D \ : \\ \hline OVR \ - Over \ range \end{array}$												esult of			
	Range	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	
		WX0	WY0	WM0	WS0	Т0	C0	R0	R3840	R3904	R3968	R5000	D0	-117968	399
	Ope- rand														
	(WX240	WY240	WM1896	WS984	T255	C255	R3839	R3903	R3967	R4167	R8071	D4095		99
	S	0	0	0	0	0	0	0	0	0	0	0	0	0	
	D		0	0	0	\bigcirc	\bigcirc	\bigcirc		\bigcirc	○*	O*	\bigcirc		
 When conversion control "EN" = 1 or "EN ↑ " (p instruction) has a transition from 0 to 1, will convert the second data from the S~S+1 32-bit register into the equivalent hour : minute : second time value and store it in the three successive registers D~D+2. All the data in this instruction is represented in binary (if there is a negative value it is represented using the 2's complement.) 															



- As shown in the diagram above, after convert to hour : minute : second value, the minute : second value can only be in the range of -59 to 59, and the hour number can be in the range of -32768 to 32767 hours. Because of this, the maximum limit of D is -32768 hours, -59 minutes, -59 seconds to 32767 hours, 59 minutes, 59 seconds, the corresponding second value of S which is in the range of -117968399 to 117964799 seconds. If the S value exceeds this range, this instruction cannot be carried out, and will set the over range flag "OVR" to 1. If S = 0 then result is 0 flag "D = 0" will be set to 1.
- The program in the diagram below is an example of this instruction. Please note that the content of the registers are denoted by hexadecimal, and on the right is its equivalent value in decimal notation.

→HEX		CONVERSION OF ASCII CODE TO HEXADECIMAL VALUE												FUN 63 ₽ →HEX
Conversion cor	Ladder symbol S : Starting source register. Conversion control — EN↑- 63P.→ HEX— S : ERR — N : ERR — D : D : D : S, N, D, can associate with V, Z, P0~P9 to do indirect addressing application.									he result	-			
Range	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
Ope-	WX0 	WY0 WY240	WM0 WM1896	WS0 WS984	T0 T255	C0 C255	R0 R3839	R3840 R3903	R3904 R3967			D0 D4095	16-bit +number	V \ Z P0~P9
S	0	0	0	0	0	0	0	0	0	0	0	0		0
Ν	0	0	\bigcirc	0	0	0	0	0	0	0	0	0	1~511	0
									0					

- When conversion control "EN" =1 or "EN ↑" (is instruction) changes from 0→1, it will convert the N successive hexadecimal ASCII character('0'~'9','A'~'F') convey by 16 bit registers (Low Byte is effective) into hexadecimal value, and store the result into the register starting with D. Every 4 ASCII code is stored in one register. The nibbles of register, which does not involve in the conversion of ASCII code will remain unchanged.
- The conversion will not be performed when N is 0 or greater than 511.
- When there is ASCII error (neither $30H \sim 39H$ nor $41H \sim 46H$), the output "ERR" is ON.
- The main purpose of this instruction is to convert the hexadecimal ASCII character ('0'~'9','A'~'F'), which is received by communication port1 or communication port2 from the external ASCII peripherals, to the hexadecimal values that the CPU can process directly.

D

 \bigcirc

 \bigcirc

 \bigcirc

	N 64 P ASCII		CONVERSION OF HEXADECIMAL VALUE TO ASCII CODE												FUN 64 →ASC	_
Cor	Ladder symbolS : Starting source registerConversion control – $EN\uparrow$ $64P. \rightarrow ASCII$ N : Number of hexadecimal digit to be conver ASCII code.N :Image: S : Image: S															
ſ	🔪 Range	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	К	XR	I
		WX0	WY0	WM0	WS0	T0	C0	R0	R3840	R3904	R3968	R5000	D0	16-bit	V · Z	I
	Ope- rand	 WX240	 WY240	WM1896	WS984	 T255	C255	R3839	R3903	R3967	R4167	R8071	 D4095	+ number	P0~P9	
	S	0	0	0	0	\bigcirc	\bigcirc	0	0	0	0	0	0		\bigcirc	I
	Ν	0	0	0	0	\bigcirc	0	0	\bigcirc	0	0	\bigcirc	0	1~511	\bigcirc	1

• When conversion control "EN" =1 or "EN ↑" (instruction) changes from 0→1, will convert the N successive nibbles of hexadecimal value in registers start from S into ASCII code, and store the result to low byte (high byte remain unchanged) of the registers which start from D.

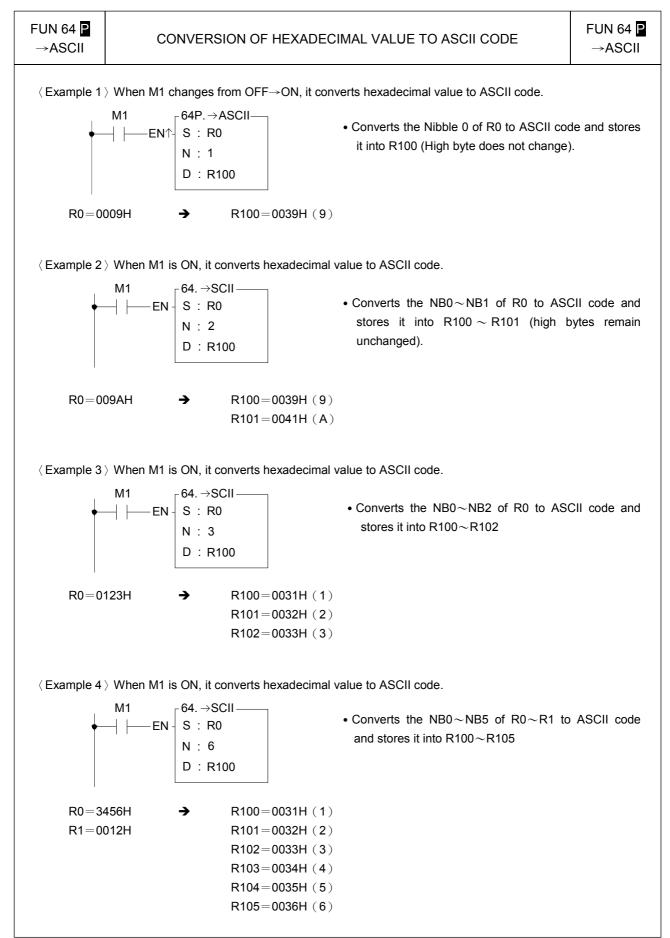
 \bigcirc

 \bigcirc

⊜*

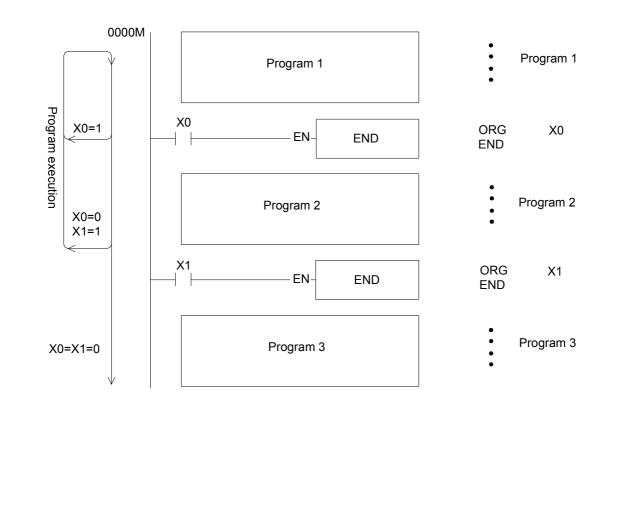
()*

 \bigcirc


 \bigcirc

• The conversion will not be performed when the value of N is 0 or greater than 511.

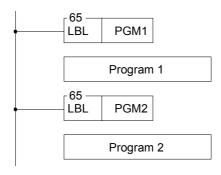
 \bigcirc


 \bigcirc

• The main purpose of this instruction is to convert the numerical value data, which PLC has processed, to ASCII code and transmit to ASCII peripherals by communication port1 or communication port 2.

END	PROGRAM EI	END	
End co	Ladder symbol ntrol — EN-END	No operand	

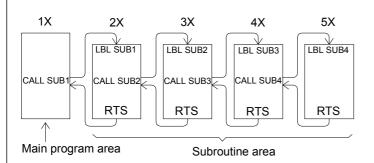
- When end control "EN" = 1, this instruction is activated. Upon executing the END instruction and "EN" = 1, the program flow will immediately returns to the starting point (0000M) to restart the next scan i.e. all the programs after the END instruction will not be executed. When "EN" = 0, this instruction is ignored, and programs after the END instruction will continue to be executed as the END instruction is not exist.
- This instruction may be placed more than one point within a program, and its input (end control "EN") controls the end point of program execution. It is especially useful for debugging and for testing.
- It's not necessary to put any END instructions in the main program, CPU will automatic restart to start point when reach the end of main program.

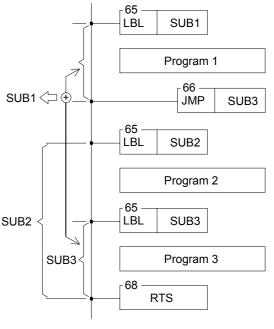

FUN 65 LBL	LABEL	FUN 65 LBL
+	Ladder symbol 65S : Alphanumeric, 1~6 characters LBL S	

- This instruction is used to make a tag on certain address within a program, to provide a target address for execution of JUMP, CALL instruction and interrupt service. It also can be used for document purpose to improve the readability and interpretability of the program.
- This instruction serves only as the program address marking to provide the control of procedure flow or for remark. The instruction itself will not perform any actions; whether the program contains this instruction or not, the result of program execution will not be influenced by this instruction.
- The label name can be formed by any 1~6 alphanumeric characters and can't be duplicate in the same program. The following label names are reserved for interrupt function usage. These "reserved words", can't be used for normal program labels.

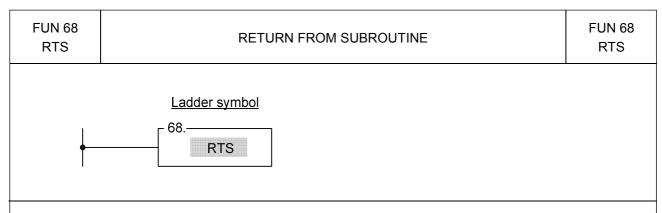
Reserved words	Description
X0+I~X15+I (INT0~INT15)	labels for external input (X0 \sim X15) interrupt
X0-I~X15-I (INT0-~INT15-)	service routine.
HSC0I~HSC7I	labels for high speed counter HSC0~HSC7 interrupt service routine.
1MSI (1MS) 、2MSI (2MS) , 3MSI (3MS) , 4MSI (4MS) , 5MSI (5MS) , 10MSI (10MS) , 50MSI (50MS) , 100MSI (100MS)	Labels for 8 kinds of internal timer interrupt service routine.
HSTAI (ATMRI)	Label for High speed fixed timer interrupt service routine.
PSO0I~PSO3I	Labels for the pulse output command finished interrupt service routine.

Only the interrupt service routine can use the label names listed on above table, if mistaken on using the reserved label on the normal subroutine can cause the CPU fail or unpredictable operation.

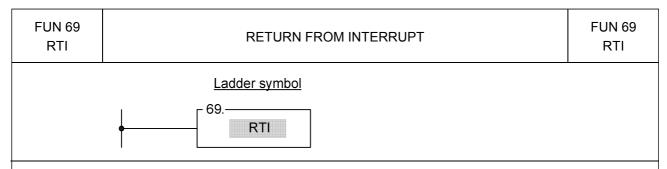

The label of following diagram illustration served only as program remarks (it is not treated as a label for call or jump target). For the application of labeling in jump control, please refer to JMP instruction for explanation. As to the labeling serves as subroutine names, please refer to CALL instruction for details.

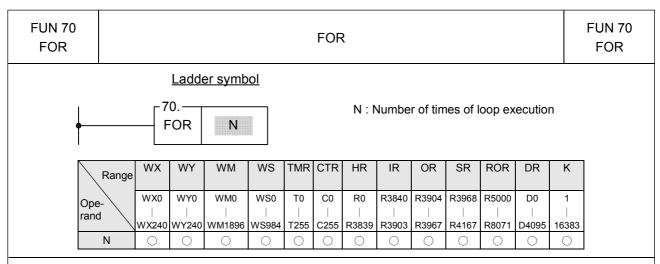


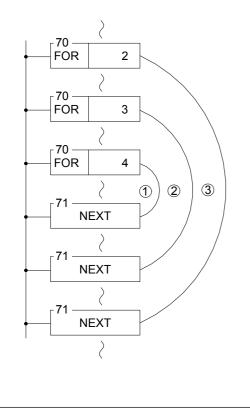
FUN 66 P JMP	JUMP	FUN 66 P JMP
Jump contr	Ladder symbol DI — EN↑ - JMP LBL LBL	b
the mark This instr	The control "EN"=1 or "EN \uparrow " (instruction) changes from 0→1, PLC will jump to the loca ed label and continuous to execute the program. In uction is especially suit for the applications where some part of the program will be executed.	
 This inst instructio watchdog 	tain condition. This can shorter the scan time while not executes the whole program. ruction allows jump backward (i.e. the address of LBL is comes before the addre n). However, care should be taken if the jump action cause the scan time exceed the lime timer, the WDT interrupt will be occurred and stop executing.	nit set by the
	 Note that the program of the program o	ram will jump PATHB and erefore it will instructions of s of registers A will keep

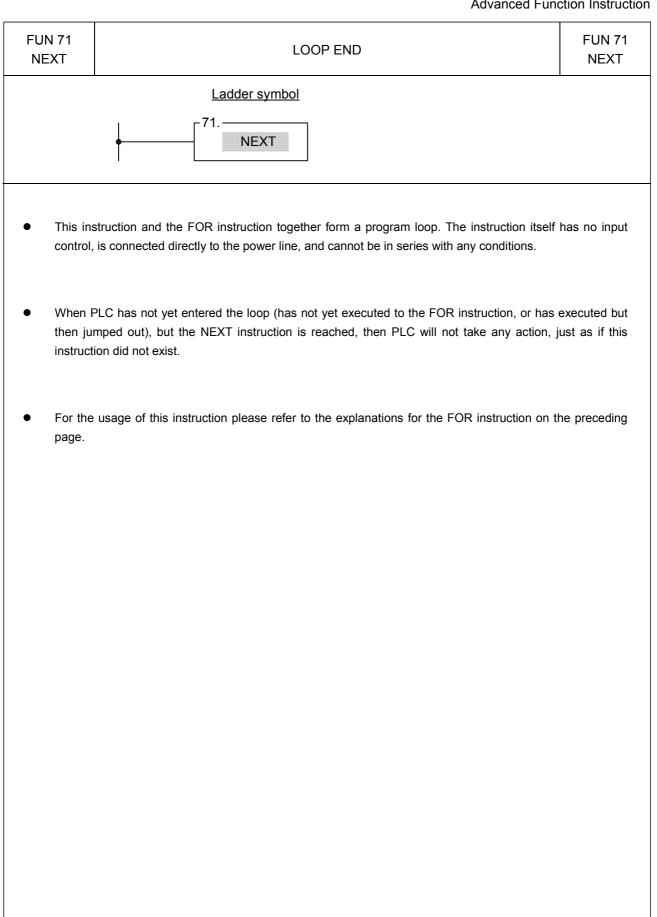

FUN 67 P CALL		CALL	FUN 67 P CALL
Call c	Ladder symbol 67P	LBL : The subroutine label name to b	e called.

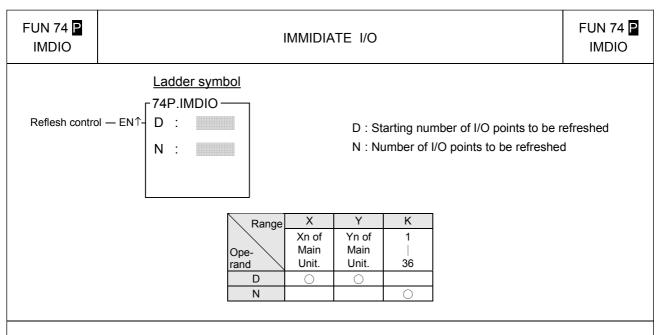
- When call control "EN"=1 or "EN ↑" (instruction) changes from 0→1, PLC will call (perform) the subroutine bear the same label name as the one being called. When execute the subroutine, the program will execute continuous as normal program does but when the program encounter the RTS instruction then the flow of the program will return back to the address immediately after the CALL instruction.
- All the subroutines must end with one "return from subroutine instruction RTS" instruction; otherwise it will cause executing error or CPU shut down. Nevertheless, an RTS instruction can be shared by subroutines (so called as multiple entering subroutines; even though the entry points are different, they have a same returning path) as illustrated in the right diagram subroutine SUB1~3.
- When main program called a subroutine, the subroutine also can call the other subroutines (so called the nested subroutines) for up to 5 levels at the most (include the interrupt routine).




Interrupt service programs (HSC0I~HSC7I、PSO0I~PSO3I、X0+I~X15+I/INT0~INT15、X0-I~X15-I/INT0~INT15、X0-I~X15-I/INT0~INT15、X0-I~X15-I/INT0~INT15、X0-I~X15-I/INT0~INT15、X0-I~X15-I/INT0~INT15-、HSTAI/ATMRI、1MSI/1MS、2MSI/2MS、3MSI/3MS、4MSI/4MS、5MSI/5MS、10MSI/10MS、50MSI/50MS、100MSI/100MS) are also a kind of subroutine. It is also placed in sub program area. However, the calling of interrupt service program is triggered off by the signaling of hardware to make the CPU perform the corresponding interrupt service program (which we called as the calling of the interrupt service program). The interrupt service program can also call subroutine or interrupted by other interrupts with higher priority. Since it is also a subroutine (which occupied one level), it can only call or interrupted by 4 levels of subroutine or interrupt service program. Please refer to RTI instruction for explanation.


- This instruction is used to represent the end of a subroutine. Therefore it can only appear within the subroutine area. Its input side has no control signal, so there is no way to serially connect any contacts. This instruction is self sustain, and is directly connected to the power line.
- When PLC encounter this instruction, it means that the execution of a subroutine is finished. Therefore it will return to the address immediately after the CALL instruction, which were previously executed and will continue to execute the program.
- If this instruction encounters any of the three flow control instructions MC, SKP, or JMP, then this instruction
 may not be executed (it will be regarded as not exist). If the above instructions are used in the subroutine
 and causing the subroutine not to execute the RTS instruction, then PLC will halt the operation and set the
 M1933(flow error flag) to 1. Therefore, no matter what the flow is going, it must always ensure that any
 subroutine must be able to execute a matched RTS instruction.
- For the usage of the RTS instruction please refer to instructions for the CALL instruction.


- The function of this instruction is similar to RTS. Nevertheless, RTS is used to end the execution of sub program, and RTI is used to end the execution of interrupt service program. Please refer to the explanation of RTS instruction.
- A RTI instruction can be shared by more than one interrupt service program. The usage is the same as the sharing of an RTS by many subroutines. Please refer to the explanation of CALL instruction.
- The difference between interrupts and call is that the sub program name (LBL) of a call is defined by user, and the label name and its call instruction are included in the main program or other sub program. Therefore, when PLC performs the CALL instruction and the input "EN"=1 or "EN ↑ " (instruction) changes from 0→1, the PLC will call (execute) this sub program. For the execution of interrupt service program, it is directly used with hardware signals to interrupt CPU to pause the other less important works, and then to perform the interrupt service program corresponding to the hardware signal (we call it the calling of interrupt service program). In comparing to the call instruction that need to be scanned to execute, the interrupt is a more real time in response to the event of the outside world. In addition, the interrupt service program cannot be called by label name; therefore we preserve the special "reserved words" label name to correspond to the various interrupts offered by PLC (check FUN65 explanation for details). For example, the reserved word X0+I is assigned to the interrupt is occurred (X0:), the PLC will pause the other lower priority program and jump to the subroutine address which labeled as X0+I to execute the program immediately.
- If there is a interrupt occurred while CPU is handling the higher priority (such as hardware high speed counter interrupt) or same priority interrupt program (please refer to Chapter 10 for priority levels), the PLC will not execute the interrupt program for this interrupt until all the higher priority programs were finished.
- If the RTI instruction cannot be reached and performed in the interrupt service routine, may cause a serious CPU shut down. Consequently, no matter how you control the flow of program, it must be assured that the RTI instruction will be executed in any interrupt service program.
- For the detailed explanation and example for the usage of interrupts, please refer to Chapter 10 for explanation.



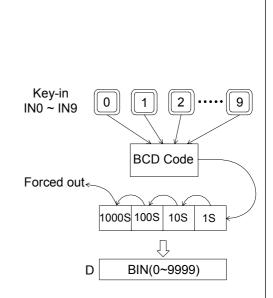
- This instruction has no input control, is connected directly to the power line, and cannot be in series with any conditions.
- The programs within the FOR and NEXT instructions form a program loop (the start of the loop program is the next instruction after FOR, and the last is the instruction before NEXT). When PLC executes the FOR instruction, it first records the N value after that instruction (loop execution number), then for N times successively execution from start to last of the programs in the loop. Then it jumps out of the loop, and continues executes the instruction immediately after the NEXT instruction.
- The loop can have a nested structure, i.e. the loop includes other loops, like an onion. 1 loop is called a level, and there can be a maximum of 5 levels. The FOR and NEXT instructions must be used in pairs. The first FOR instruction and the last NEXT instruction are the outermost (first) level of a nested loop. The second FOR instruction and the second last NEXT instruction are the second level, the last FOR instruction and the first NEXT instruction form the loop's innermost level.

- In the example in the diagram at left, loop ① will be executed 4 ×3 ×2 = 24 times, loop ② will be executed 3 ×2 = 6 times, and loop ③ will be executed 2 times.
- If there is a FOR instruction and no corresponding NEXT instruction, or the FOR and NEXT instructions in the nested loop have not been used in pairs, or the sequence of FOR and NEXT has been misplaced, then a syntax error will be generated and this program may not be executed.
- In the loop, the JMP instruction may be used to jump out of the loop. However, care must be taken that once the loop has been entered (and executed to the FOR instruction), no matter how the program flow jumps, it must be able to reach the NEXT instruction before reaching the END instruction or the bottom of the program. Otherwise FBs-PLC will halt the operation and show an error message.
- The effective range of N is 1~16383 times. Beyond this range FBs-PLC will treat it as 1. Care should be taken , if the amount of N is too large and the loop program is too big, a WDT may occur.

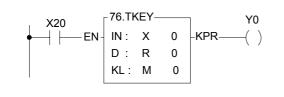
- For normal PLC scan cycle, the CPU gets the entire input signals before the program is executed, and then perform the executing of program based on the fresh input signals. After finished the program execution the CPU will update all the output signals according to the result of program execution. Only after the complete scan has been finished will all the output results be transferred all at once to the output. Thus for the input event to output responses, there will be a delay of at least 1 scan time (maximum of 2 scan time). With this instruction, the input signals or output signals specified by this instruction can be immediately refresh to get the faster input to output response without the limitation imposed by the scan method.
- When refresh control "EN" = 1 or "EN ↑" (instruction) has a transition from 1 to 0, then the status of N input points or output points (D~D+N-1) will be refreshed.
- The I/O points for FBs-PLC's immediate I/O are only limited to I/O points on the main unit. The table below shows permissible I/O numbers for 20, 32, 40 and 60 point main units:

Main-unit type Permissible numbers	20 points	32 points	40 points	60 points
Input signals	X0~X11	X0~X19	X0~X23	X0~X35
Output signals	Y0~Y7	Y0~Y11	Y0~Y15	Y0~Y23

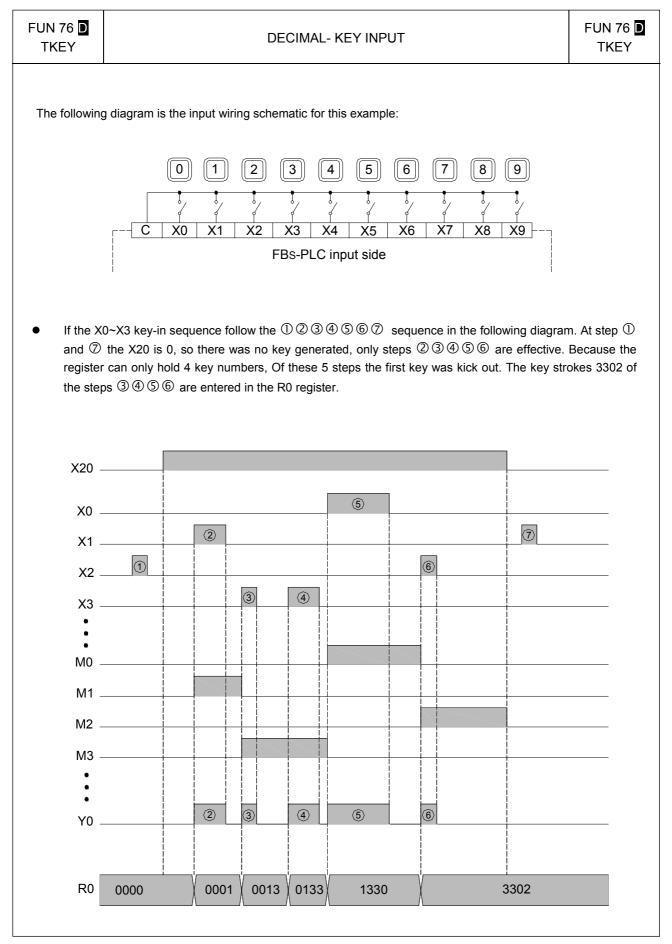
- If the intended refresh I/O signals of this instruction is beyond the range of I/O points specified on above table then PLC will be unable to operate and the M1931 error flag will be set to 1. (for example, if in a program, D=X11, N=10, which means X11 to X20 are to be immediately retrieved. Supposing the main unit is FBs-32MA, then its biggest input point is X19, and clearly X20 has already exceeded the main unit's input point number so under such case M1931 error flag will be set to 1).
- With this instruction, PLC can immediately refresh input/output signals. However, the delay of the hardware or the software filter impose on the I/O signals still exist. Please pay attention on this.


FUN	76	D

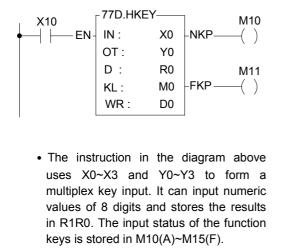
DECIMAL- KEY INPUT

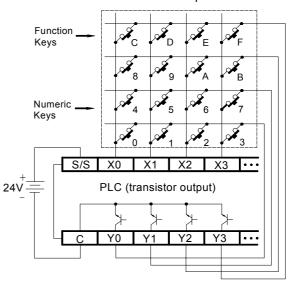

FUN 76 D TKEY

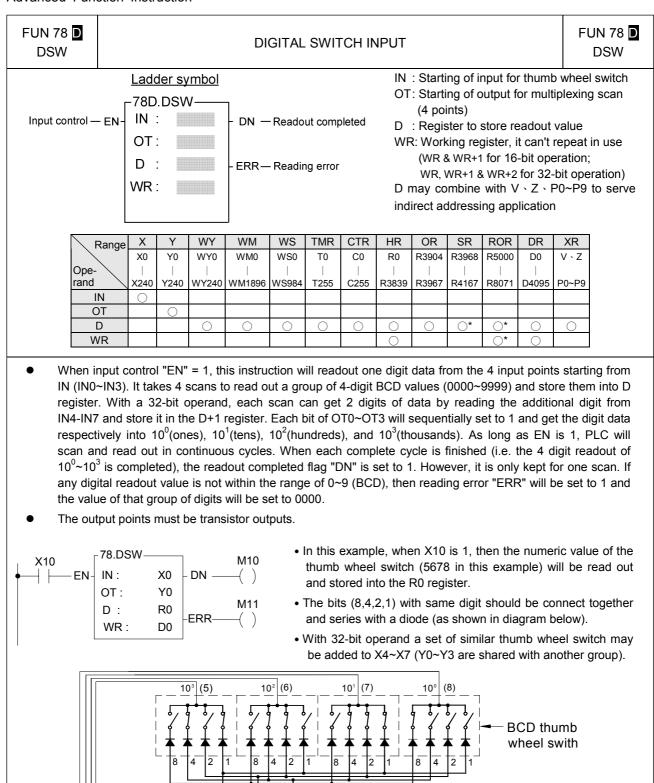
INET															INE
		Lad	der sy	<u>mbol</u>				11	N : Ke	y input	t point				
	г	-76D	.TKEY	/	-			D) : reg	ister s	toring	key-in	nume	rals	
Input control -					- KPR	— Key in	action	к	L: sta	rting co	oil to re	eflect t	he inp	ut stati	JS
		D	:			- ,		C ir	-	coml addre				P0~P9	to ser
									iuncoi	uuuro	55 upp	moutio			
		KL :													
		KL :													
Range	×	KL :	M	S	WY	WM	WS	TMR	CTR	HR	OR	SR	ROR	DR	XR
Range	X X0			S S0	WY WY0	WM WM0	WS WS0	TMR T0	CTR C0	HR R0	-		ROR R5000		XR V · Z
Range Ope-		Y	M	-			-				-				
		Y Y0 	M	S0	WY0 		WS0	T0	C0		R3904	R3968 	R5000	D0 	
Ope-	X0	Y Y0 	M M0	S0	WY0 	WM0	WS0	T0	C0	R0 	R3904	R3968 	R5000	D0 	V · Z
Ope- rand	X0	Y Y0 	M M0	S0	WY0 	WM0	WS0	T0	C0	R0 	R3904	R3968 	R5000	D0 	V · Z


- This instruction has designated 10 input points IN~IN+9 (IN0~IN9) to one decimal number entry (IN->0, IN+1->1...). According to the key-in sequence (ON) of these input points, it is possible to enter 4 or 8 decimal numbers into the registers specified by D.
- When input control "EN" = 1, this instruction will monitor the 10 input points starting from IN and put the corresponding number into D register while the key were depressed. It will wait until the input point has released, then monitor the next "ON" input point, and shift in the new number into D register (high digit is older than low digit) . For the 16-bit operand, D register can store up to 4 digits, and for the 32-bit operand 8 digits may be stored. When the key numbers full fill the D register, new key-in number will kick out the oldest key number of the D register. The key-in status of the 10 input points starting from IN will be recorded on the 10 corresponding coil starting from KL. These coils will set to 1 while the corresponding key is depressed and remain unchanged even if the corresponding key is released. Until other key is depressed then it will return to zero. As long as any input point is depressed (ON), then the key-in flag KPR will set to 1. Only one of IN0~IN9 key can be depressed at the same time. If more than one is pressed, then the first one is the only one taken. Below is a schematic diagram of the function with 16-bit operand.

When input control "EN" = 0, this instruction will not be executed. KPR output and KL coil status will be 0.
 However, the numerical values of D register will remain unchanged.




• The instruction at left represents the input point X0 with the number "0", X1 is represented by 1, ..., M0 records the action of X0, M1 records the action of X1 ..., and the input numerical values are stored in the R0 register.



FUN 77 D HKEY						HEX-	KEY II	NPUT	-						FUN ⁻ HKI	
		La	dder s	ymb	ol											
		77D.HKEY IN : Starting of digital input												it for ke	ey scar	ı
Execution contro	I — EN	- EN - IN : NKP - Number key press OT: Starting of digital outpukey scan (4 points)													multipl	exing
		OT : D : Register to store key-i												in num	bers	
		KI : Starting relay for keys												status		
		D: - FKP — Function key press KL: Starting relay for key KL: Starting relay for key WR: Working register, it c												an't re	oeat in	use
									C) may	combi	ne witl	h V 、Z	Z • P0~	P9 to s	serve
		WF	R :						iı	ndirect	addre	essing	applica	ation		
Rang	e X	Y	М	S	WY	WM	WS	TMR	CTR	HR	OR	SR	ROR	DR	XR	
	X0	Y0	M0	S0	WY0	WM0	WS0	Т0	C0	R0	R3904	R3968	R5000	D0	V 、 Z	
Ope-																
rand N	X240	Y240	M1896	S984	WY240	WM1896	WS984	T255	C255	R3839	R3967	R4167	R8071	D4095	P0~P9	
D												\cap	\cap			
KL												\cup	\cup			
		\sim	\sim	\sim										l		

- The numeric (0~9) key function of this instruction is similar as for the TKEY instruction. The hardware connection for TKEY and HKEY is different. For TKEY instruction each key have one input point to connect, while HKEY use 4 input points and 4 output points to form a 4x4 multiplex 16 key input. 4x4 means that there can be 16 input keys, so in addition to the 10 numeric keys, the other 6 keys can be used as function keys (just like the usual discrete input). The actions of the numeric keys and the function keys are independent and have no effect on each other.
- When execution control "EN" = 1, this instruction will scan the numeric keys and function keys in the matrix formed by the 4 input points starting from IN and the 4 output points starting from OT. For the function of the numeric keys and "NKP" output please refer to the TKEY instruction. The function keys maintain the key-in status of the A~F keys in the last 6 relays specified by KL (the first 10 store the key-in status of the numeric keys). If any one of the A~F keys is depressed, FKP (FO1) will set to 1. The OT output points for this instruction must be transistor outputs.
- The biggest number for a 16-bit operand is 4 digits (9999), and for 32-bit operand is 8 digits (99999999). However, there are only 6 function keys (A~F), no matter whether it is a 16-bit or 32-bit operand.

X4

X5

X6

second group input

PLC

(only effective in 32-bit operand)

Χ7

Х3

Y3

S/S

C

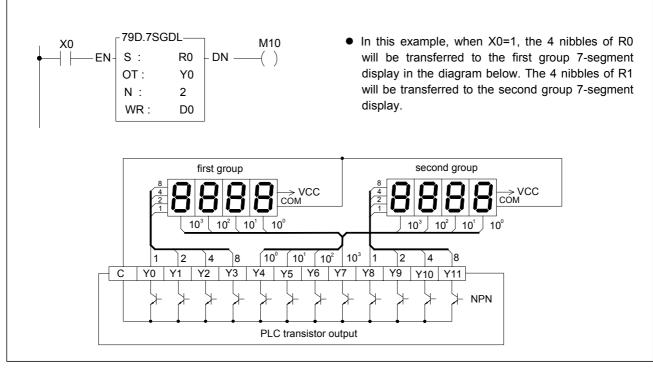
24V

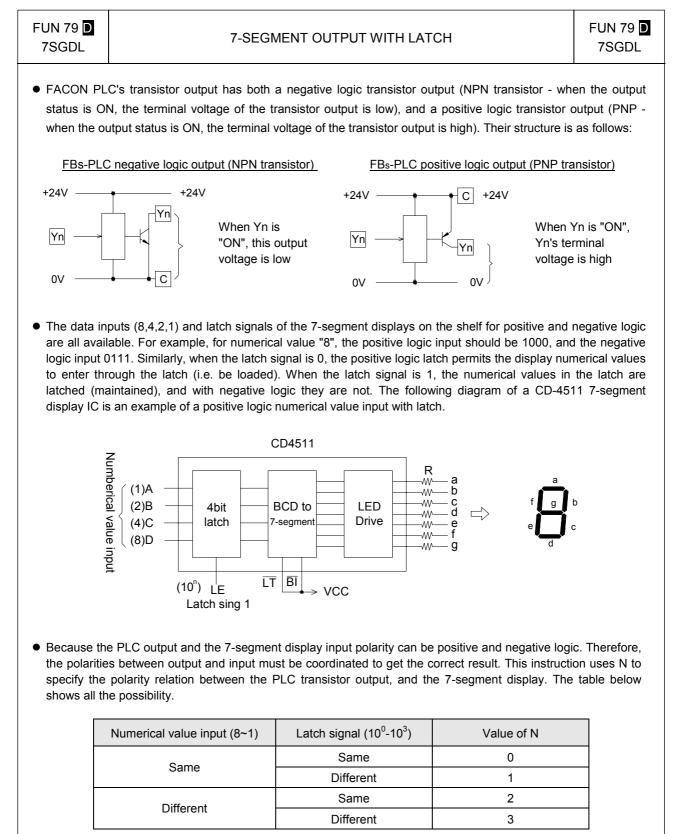
X0

Y0

X1

Y1

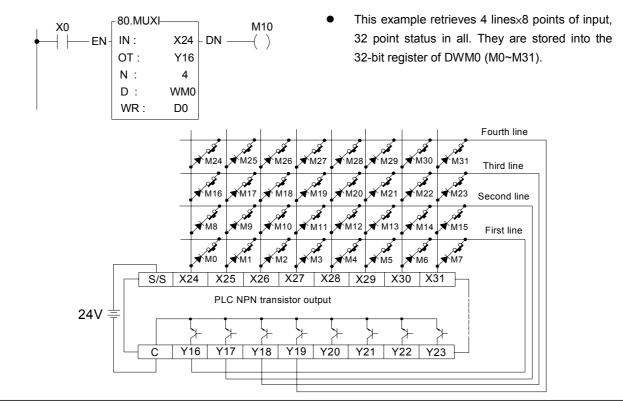

X2


Y2

first group input

FUN 79 D 7SGDL				7-9	SEGM	ENT (DUTF	VUT W	ITH L	АТСН					JN 79 D SGDL
Execution control	— EN	-79 11- S 0 N	9D.7S ; : ;T :	symbol GDL—	- DN -	– Outp	ut com	nplete	OT N WR S m	displa : Starti : Spec : Work ay con	ayed ng nun ify sign king reg	nber of al outp gister, i <i>v</i> ith V \	scanni out and t can't i Z \ P0	(BCD) to ing outp polarity repeat ir i~P9 to s	ut of latch h use
Range	Y	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
Ope-	Y0 '240	WX0 WX240	WY0 WY240	WM0 WM1896	WS0 WS984	T0 T255	C0 C255	R0 R3839	R3840 R3903	R3904 R3967	R3968 R4167	R5000 R8071	D0 D4095	16-bit number	V ∖ Z P0~P9
S			0	\bigcirc	\bigcirc	\bigcirc	0	0	0	0	0	0	0	\bigcirc	\bigcirc
OT	0														
N														0~3	

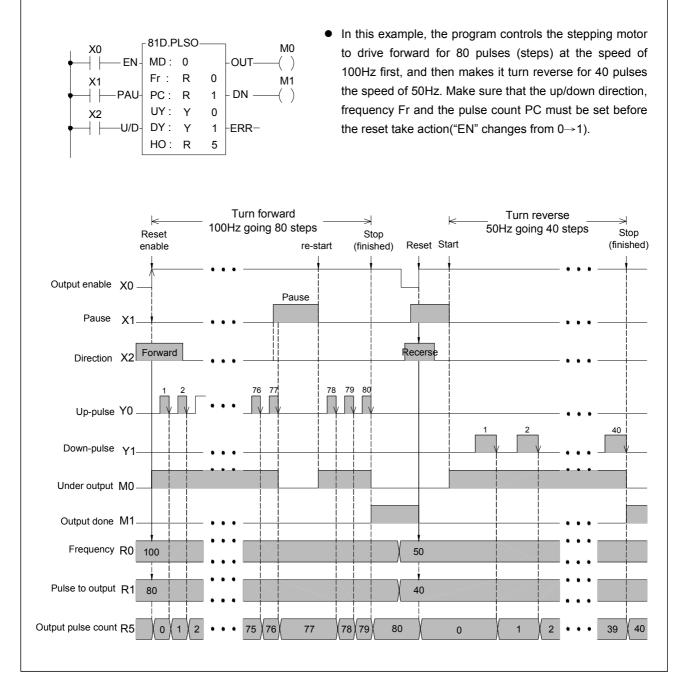
- When input control "EN" = 1, the 4 nibbles of the S register, from digit 0 to digit 3, are sequentially sent out to the 4 output points, OT0~OT3. While output the digit data, the latch signal of that digit (OT4 corresponds to digit 0, OT5 corresponds to digit 1, etc...) at the same time is also sent out so that the digital value will be loaded and latched into the 7-segment display respectively.
- When in D (32-bit) instruction, nibbles 0~3 from the S register, and nibbles 0~3 from the S+1 register are transferred separately to OT0~OT3 and OT8~OT11. Because they are transferred at the same time, they can use the same latch signal. 16-bit instructions do not use OT8~OT11.
- As long as "EN" remains 1, PLC will execute the transfer cyclically. After each transfer of a complete group of numerical values (nibbles 0~3 or 0~7), the output completed flag "DN" will set to 1. However, it will only be kept for 1 scan.



• In the diagram above, CD4511 is used as an example. If use NPN output, the data input polarity is different to PLC, and its latch input polarity is the same as PLC, so N value should chosen as 2.

FUN 8 MUXI						MUL	TIPLE	EX IN	PUT							1XI 1XI
Executio	on contro	I — EN-	_ ^{80.Ⅰ}	:		DN — E	Executio	on com	pleted	OT: N: D: Dma	Multipl (must t Multipl Regist ay corr	ex out be trans ex inpu er for s ubine w	ut point put poin sistor o ut lines storing rith V, 2 upplicat	nt nur output (2~8) result Z, P0-	nber point))	serve
	Range	Х	Y	WY	WM	WS	TMR	CTR	HR	OR	SR	ROR	DR	K	XR	
		X0	Y0	WY0	WM0	WS0	Т0	C0	R0	R3904	R3968	R5000	D0	2	V 、 Z	
Op		 X240	 Y240	 WY240	 WM1896	 WS984	 T255	 C255	 R3839	 R3967	 R4167	 R8071	 D4095	 8	P0~P0	
	IN	\bigcirc														
	OT		0													
	Ν													0		
	D			\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0*	O*	\bigcirc		\bigcirc	
					ex metho t point s					•					• •	

- only need to use 8 input points and N output points.
 The multiplex scanning method goes through N output points starting from the OT output point. Each scan one of the N bits will set to 1 and the corresponding line will be selected. OT0 responsible for first line, while OT1 responsible for second line, etc. Until it read all the N lines the 8×N status that has been read out is then stored into the register starting at D, and the execution completed flag "DN" is set as 1 (but is only kept for one scanning period).
- With every scan, this instruction retrieves a line for 8 input status, so N lines require N scan cycles before they can be completed.



FUN 8 ⁻ PLS						PUL	SE O	UTP	UT						N 81 D PLSO
Paus	Ladder symbol MD : Output mode selection out control - EN 81D.PLSO MD : OUT- Output go Fr : OUT- Output go Fr : DN - Output completed V2: Or DIR DY:or DR HO : ERR-Error HO : DY:or OR HO : OUT- Output completed DY:or DR ERR-Error HO : DIR: 1- up; 0- down.										t bint (MD=0 point (ME pulse reg gned). (MD=1).)=0). ster.			
	Range	Y	WX	WY	WM	WS	TMR	CTR	HR	OR	SR	ROR	DR	K	1
	Ope- rand	Yn of Main Unit	WX0 WX240	WY0 WY240	WM0 WM1896	WS0 WS984	T0 T255	C0 C255	R0 R3839		R3968 R4167	R5000 R8071	D0 D4095	16/32-bit +/- number	
	MD													0~1	
	Fr		0	0	0	0	\bigcirc	\bigcirc	0	0	0	0	0	8~2000	1
	PC		\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0	\bigcirc	0	1
		0													
	UY , CK	Ŭ													
	DY , CK DY , DR	0													
		Ŭ		0	0	0	0	0	0	0	O*	O *	0		

- When MD=0, this instruction performs the pulse output control as following:
- Whenever the output control "EN" changes from 0→1, it first performs the reset action, which is to clear the output flag "OUT" and "DN" as well as the pulse out register HO to be 0. It gets the pulse frequency and output pulse count values, and reads status of up and down direction "U/D", so as to determine the direction to be upward or downward. As the reset finished, this instruction will check the input status of pause output "PAU". No action will be taken if the pause output is 1 (output pause). If the PAU is 0, it will start to output the ON/OFF pulse with 50% duty at the frequency Fr to the UY(U/D=1) or DY(U/D=0) point. It will increment the value of HO register each time when a pulse is output, and will stop the output when HO register's pulse count is equal to or greater than the cumulative pulse count of PC register and set the output complete flag "DN" to 1. During the time when output pulse is transmitting the output transmitting flag "OUT" will be set to 1, otherwise it will be 0.
- Once it starts to transmit pulse, the output control "EN" should kept to 1. If it is changed to 0, it will stop the pulse sending (output point become OFF) and the flag "OUT" changes back to 0, but the other status or data will keep unchanged. However, when its "EN" changes again from 0 to 1, it will lead to a reset action and treat as a new start; the entire procedure will be restarted again.
- If you want to pause the pulse output and not to restart the entire procedure, the 'pause output' "PAU" input can be used to pause it. When "PAU" =1, this instruction will pause the pulse transmitting (output point is OFF, flag "OUT" change back to 0 and the other status or data keeps unchanged). As it waits until the "PAU" changes back from 1 to 0, this instruction will return to the status before it is paused and continues the pulse transmitting output.
- During the pulse transmission, this instruction will keep monitoring the value of pulse frequency Fr and output pulse count PC. Therefore, as long as the pulse output is not finished, it may allow the changing of the pulse frequency and pulse count. However, the up/down direction "U/D" status will be got only once when it takes the reset action ("EN" changes from 0→1), and will keep the status until the pulse output completed or another reset occur. That is to say, except that at the very moment of reset, the change of "U/D" does not influence the operation of this instruction.
- The main purpose of this instruction is to drive the stepping motor with the UY (upward) and DY (downward) two directional pulses control, so as to help you control the forward or reverse rotating of stepping motor. Nevertheless, if you need only single direction revolving, you can assign just one of the UY or DY (which will save one output point), and leaving the other output blank. In such case, the instruction will ignore the up/down input status of "U/D", and the output pulse will send to the output point you assigned.

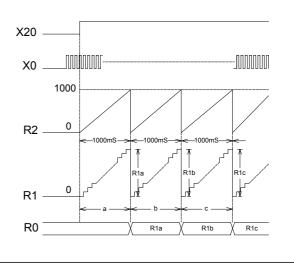
FUN 81 PLSO	PULSE OUTPUT	FUN 81 PLSO
----------------	--------------	----------------

- When MD=1, the pulse output will reflect on the control output DIR (pulse direction. DIR=1, up; DIR=0, down) and CK (pulse output).
- This instruction can only be used once, and UY (CK) and DY (DR) must be transistor output point on the PLC main unit.
- The effective range of output pulse count PC for 16 bit operand is 0~32767. For the 32 bit operand(instruction), it is 0~2147483647. If the PC value = 0, it is treated as infinite pulse count, and this instruction will transmit pulses without end with HO value and "DN" flag set at 0 all the time. The effective range of pulse frequency (Fr) is 8~2000. If the value PC or Fr exceeds the range, this instruction will not be carried out and the error flag "ERR" will set to 1.

UN 82 PWM				PUL	SE WI	DTH	MOE	OULAT	ION					FUN PW
Execution (control — I	EN - T	<u>adder</u> 2.PWN o : p : T :	symbol M	7	— En	ror flaç)	Tp :	Pulse p	2767mS period 2676mS	5) 5)		
Rar	ae Y	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K
Ope- rand	Yn of main unit	WX0 WX240	WY0 WY240	WM0 WM1896	WS0 WS984	T0 T255	C0 C255	R0 R3839	R3840 R3903	R3904 R3967	R3968 R4167	R5000 R8071	D0 D4095	0 32767
То		\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	0	0	\bigcirc	0	0	\bigcirc	0
-		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Тр														

• When execution control "EN" = 1, will send the pulse to output point OT with the "ON" state for To ms and period as Tp. OT must be a transistor output point on the main unit. When "EN" is 0, the output point will be OFF.

- The units for Tp and To are mS, resolution is 1 mS. The minimum value for To is 0 (under such case the output point OT will always be OFF), and its maximum value is the same as Tp (under such case the output point OT will always be on). If To > Tp there will be an error, this instruction will not be carried out, and the error flag "ERR" will set to 1.
- This instruction can only be used once.


FUN 83 SPD						SPE	ED D	DETE	стю	N					F	FUN 83 SPD
Detection con	itrol —	- EN	- ^{83.} S TI	:	<u>ymbol</u>	- OVF -	— Ove	erflow		TI: Sa (u	amplino Inits in	g durat	ion	speed ts	detecti	on
Ra	nge	Х	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	
		K0	WX0	WY0	WM0	WS0	Т0	C0	R0	R3840	R3904	R3968	R5000	D0	1	
Ope-	\backslash .								00000		D2007			04005	00707	
rand			v x240	WY240	WM1896	vv 5984	T255	0255	K3839	R3903	K3967	K4167	K8071	D4095	32767	
S TI		<u> </u>	\bigcirc	\cap	\cap	\cap	\bigcirc	\cap	\cap	\cap	\bigcirc	\bigcirc	\cap	\cap	\cap	
			0	0	0	0	0	0	0			0*	 *	0	0	
				U	U	Û	0	U	U	U	U	U	U	U		

- This instruction uses the interrupt feature of the 8 high speed input points (X0~X7) on the PLC main unit to detect the frequency of the input signal. Within a specific sampling time (TI), it will calculate the input pulse count for S input point, and indirectly find the revolution speed of rotating devices (such as motors).
- While use this instruction to detect the rotating speed of devices, The application should design to generate more pulse per revolution in order to get better result, but the sum of input frequency of all detected signals should under 5KHz, otherwise the WDT may occur.
- The D register for storing results uses 3 successive 16-bit registers starting from D (D0~D2). Besides D0 which is used to store counting results, D1 and D2 are used to store current counting values and sampling duration.
- When detection control "EN" = 1, it starts to calculate the pulse count for the S input point, which can be shown in D1 register. Meanwhile the sampling timer (D2) is switched on and keeps counting until the value of D2 is reach to the sampling period (TI). The final counted value is stored into the D0 register, and then a new counting cycle is started again. The sampling counting will go on repeating until "EN" = 0.
- Because D0 only has 16 bits, so the maximum count is 32767. If the sampling period is too long or the input pulse is too fast then the counted value may exceed 32767, under that case the overflow flag will set to 1, and the counting action will stop.
- Because the sampling period TI is already known and if every revolution of attached rotating device produces "n" pulses, then the following equation can be used to get the revolution

speed : N =
$$\frac{(D0) \times 60}{n \times TI} \times 10^3$$
 (rpm)
X20
S : X 0
TI : 1000
D : R 0

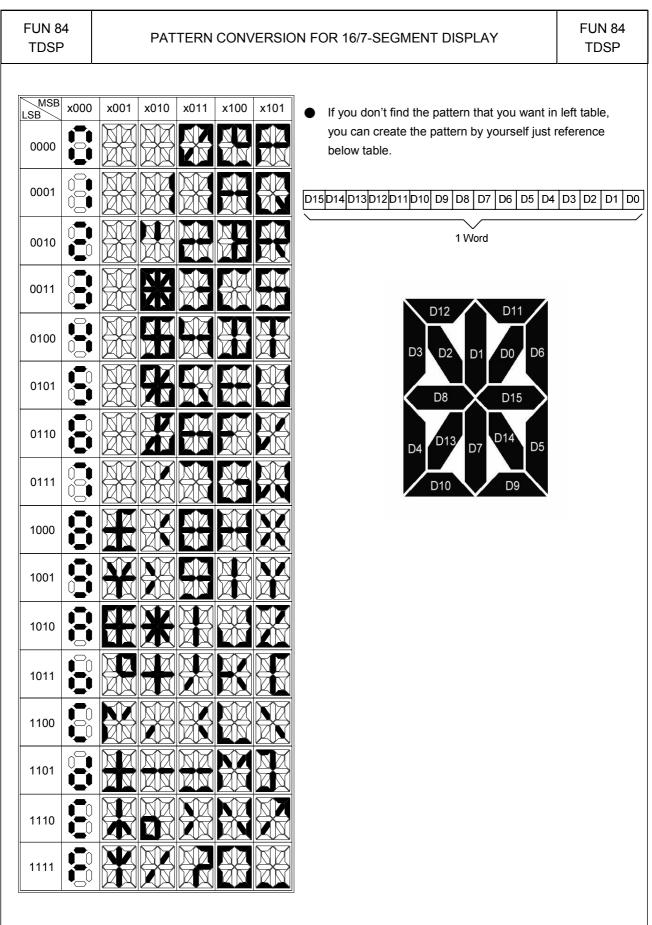
 In the above example, if every revolution of the rotating device produces 20 pulses (n = 20), and the R0 value is 200, then the revolution per minute speed "N" is as

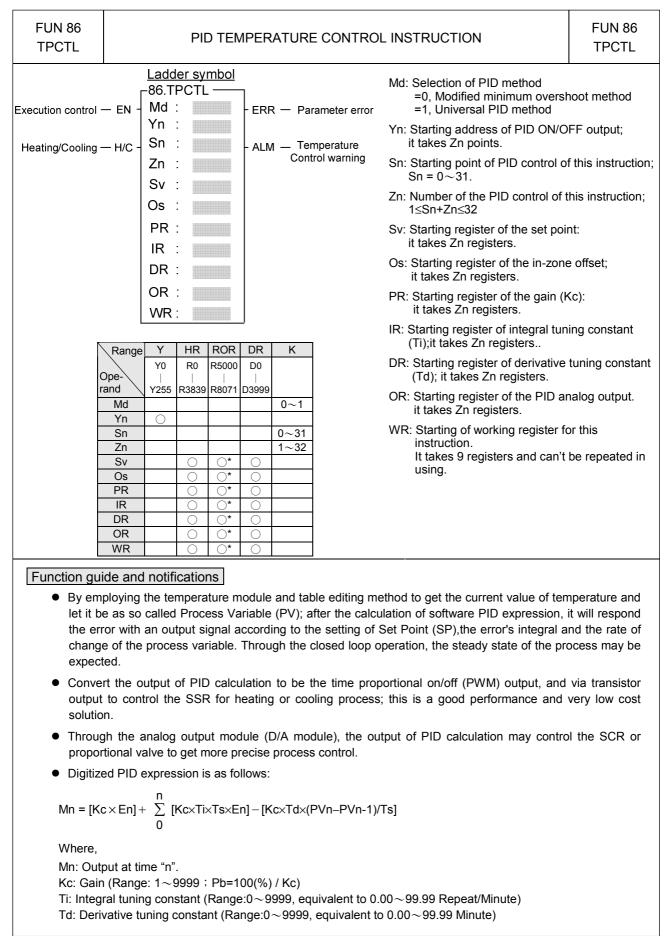
follows :
$$N = \frac{(200) \times 60}{60 \times 1000} \times 10^3 = 200 \text{ rpm}$$

FUN 84 TDSP	Р	PATTERN CONVERSION FOR 16/7-SEGMENT DISPLAY								
	La	adder symbol								
Execution contro	DI — EN↑- N SDI — OFF- N	4.TDSP //d: S:: Ns::				S: Ns NI D:	: Start of c Length of Starting a	ddress of character f character ddress to	begin converted - store the conver pined with V, Z, F	ted pattern
Input contro	ы — он - Г	D :					isters for i			0 1 3 macx
		Range	HR	OR	ROR	DR	K	XR		
		Operand		R3904 R3967		D0 D4095	16/32 bit	V ∖ Z P0~P9		
		Md					0~1			
		S	\bigcirc	\bigcirc	\bigcirc	0	0	0		
		Ns	0	0	0	0	0			
		NI D	0	0	0 ()*	0	0			
		5			\bigcirc	\cup				
alphanur	meric charac	ters into displa	iy pat	terns	suited	for 16	6 segment	encoded	It can convert mode display of egment display.	
perform	the display	pattern conve	ersion	, whe	re S	is the	starting	address	^F Md = 0, this ir storing the beg he length of beg	in converted

characters, and D is the starting address to store the converted result.

Byte 0 of S is the "1st" displaying character, byte 1 of S is the 2nd displaying character,.....


Ns is the pointer to tell where the start character is.


NI is the character quantity for conversion.

After execution, each 8-bit character of the source will be converted into the corresponding 16-bit display pattern.

- When input "OFF" = 1, all bits of display pattern will be 'off' if Md = 0. if Md=1, all BCD codes will be substituted by blank code(0F)
- When input "ON"= 1,all bits of display pattern will be 'on' if Md = 0. if Md = 1, all BCD codes will be substituted by code 8(all light).
- Please refer Chapter 16 "FBs-7SG display module" for more detail description.

16-Segment display patterns shown as below :

FUN 86	
TPCTL	

PID TEMPERATURE CONTROL INSTRUCTION

FUN 86 TPCTL

PVn : Process variable at time "n"

PVn_1: Process variable when loop was last solved

En: Error at time "n" ; E= SP – PVn

Ts: Solution interval for PID calculation (Valid value are 10, 20, 40, 80,160, 320; the unit is in 0.1Sec)

PID Parameter Adjustment Guide

- As the gain (Kc) adjustment getting larger, the larger the proportional contribution to the output. This can
 obtain a sensitive and rapid control reaction. However, when the gain is too large, it may cause oscillation.
 Do the best to adjust "Kc" larger (but not to the extent of making oscillation), which could increase the
 process reaction and reduce the steady state error.
- Integral item may be used to eliminate the steady state error. The larger the number (Ti, integral tuning constant), the larger the integral contribution to the output. When there is steady state error, adjust the "Ti" larger to decrease the error.

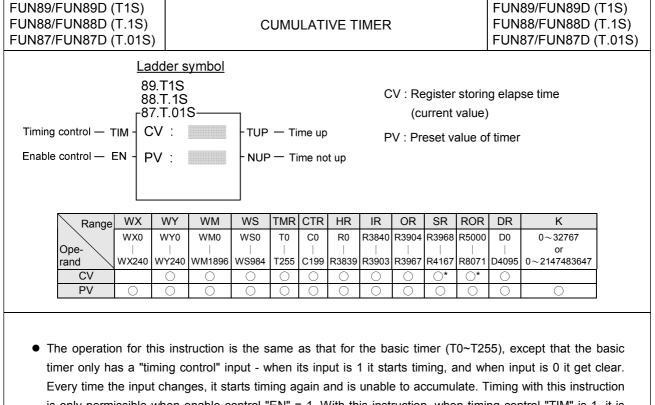
When the "Ti" = 0, the integral item makes no contribution to the output.

For exam., if the reset time is 6 minutes, Ti=100/6=17 ; if the integral time is 5 minutes, Ti=100/5=20.

Derivative item may be used to make the process smoother and not too over shoot. The larger the number (Td, derivative tuning constant), the larger the derivative contribution to the output. When there is too over shoot, adjust the "Td" larger to decrease the amount of over shoot. When the "Td" = 0, the derivative item makes no contribution to the output.

For exa, if the rate time is 1 minute, then the Td = 100; if the differential time is 2 minute, then the Td = 200.

- Properly adjust the PID parameters can obtain an excellent result for temperature control.
- The default solution interval for PID calculation is 4 seconds (Ts=40)
- The default of gain value (Kc) is 110, where Pb=1000/110x0.1% = 0.91%; the system full range is 1638°, it means 1638x0.91 = 14.8° to enter proportional band control.
- The default of integral tuning constant is 17, it means the reset time is 6 minutes (Ti=100/6=17).
- The default of derivative tuning constant is 50, it means the rate time is 0.5 minutes (Td=50).
- When changing the PID solution interval, it may tune the parameters Kc, Ti, Td again.

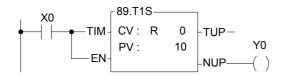

Instruction guide

- FUN86 will be enabled after reading all temperature channels.
- When execution control "EN" = 1, it depends on the input status of H/C for PID operation to make heating (H/C=1) or cooling (H/C=0) control. The current values of measured temperature are through the multiplexing temperature module ; the set points of desired temperature are stored in the registers starting from Sv. With the calculation of software PID expression, it will respond the error with an output signal according to the setting of set point, the error's integral and the rate of change of the process variable. Convert the output of PID calculation to be the time proportional on/off (PWM) output, and via transistor output to control the SSR for heating or cooling process; where there is a good performance and very low cost solution. It may also apply the output of PID calculation (stored in registers starting from OR), by way of D/A analog output module, to control SCR or proportional valve, so as to get more precise process control.
- When the setting of Sn, Zn (0 ≤ Sn ≤ 31 and 1 ≤ Zn ≤ 32, as well as 1 ≤ Sn + Zn ≤ 32) comes error, this instruction will not be executed and the instruction output "ERR" will be ON.

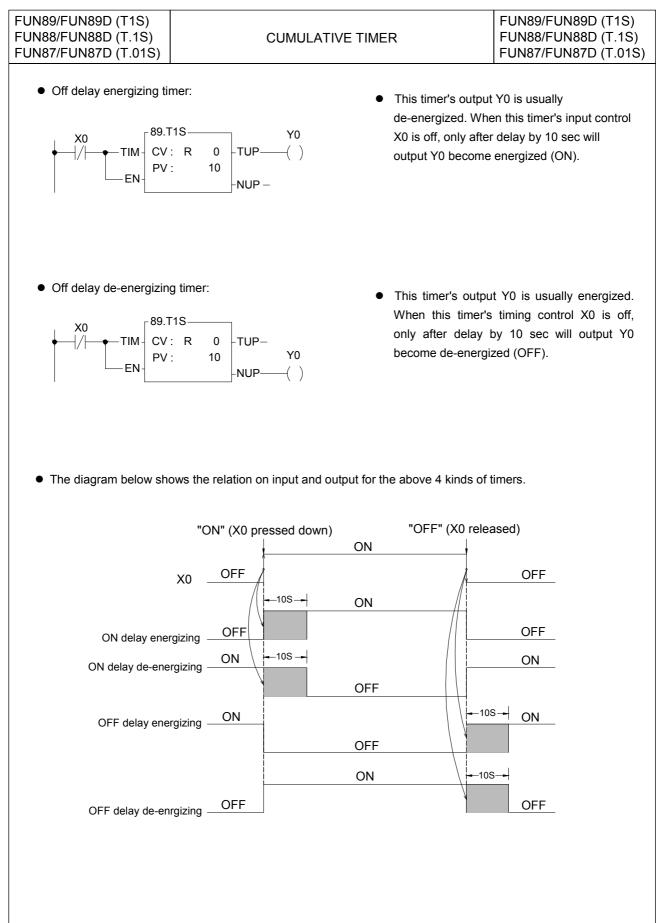
This instruction compares the current value with the set point to check whether the current temperature falls within deviation range (stored in register starting from Os). If it falls in the deviation range, it will set the in-zone bit of that point to be ON; if not, clear the in-zone bit of that point to be OFF, and make instruction output "ALM" to be ON.

		0
FUN 86 TPCTL	PID TEMPERATURE CONTROL INSTRUCTION	FUN 86 TPCTL
point o values will set	mean time, this instruction will also check whether highest temperature warning (the regist of highest temperature warning is R4008). When successively scanning for ten time of measured temperature are all higher than or equal to the highest warning set point, to be ON and instruction output "ALM" will be on. This can avoid the safety problem ature out of control, in case the SSR or heating circuit becomes short.	es the current the warning bit
or the registe desired	struction can also detect the unable to heat problem resulting from the SSR or heating ci obsolete heating band. When output of temperature control turns to be large power r) successively in a certain time (set in R4007 register), and can not make current tem d range, the warning bit will set to be ON and instruction output "ALM" will be ON.	(set in R4006 operature fall in
ד v ii	tarting of working register for this instruction. It takes 9 registers and can't be repeated in The content of the two registers WR+0 and WR+1 indicating that whether the current tem within the deviation range (stored in registers starting from Os). If it falls in the deviation n-zone bit of that point will be set ON; if not, the in-zone bit of that point will be cleared Ol it definition of WR+0 explained as follows:	perature falls range, the
	Bit0=1, it represents that the temperature of the Sn+0 point is in-zone Bit15=1, it represents that the temperature of the Sn+15 point is in-zone.	
BI	t definition of WR+1 explained as follows: Bit0=1, it represents that the temperature of the Sn+16 point is in-zone… Bit15=1, it represents that the temperature of Sn+31 point is in-zone.	
V V	The content of the two registers WR+2 and WR+3 are the warning bit registers, they whether there exists the highest temperature warning or heating circuit opened.	indicate that
	it definition of WR+2 explained as follows: Bit0=1, it means that there exists the highest warning or heating circuit opened at the Sr Bit15=1, it means that there exists the highest warning or heating circuit opened at the S	-
B	it definition of WR+11 explained as follows:	
F	Bit0=1, it means that there exists the highest warning or heating circuit opened at the Sr Bit15=1, it means that there exists the highest warning or heating circuit opened at the Registers of WR+4 \sim WR+8 are used by this instruction.	
● It need	s separate instructions to perform the heating or cooling control.	
Specific re	gisters related to FUN86	
● R4005	The content of Low Byte to define the solution interval between PID calculation =0, perform the PID calculation every 1 seconds.	
	=1, perform the PID calculation every 2 seconds.=2, perform the PID calculation every 4 seconds. (System default)	
	=3, perform the PID calculation every 8 seconds. (System default)	
	=4, perform the PID calculation every 16 seconds.	
	≥5, perform the PID calculation every 32 second.	
:	The content of High Byte to define the cycle time of PID ON/OFF (PWM) output.	
	=0 · PWM cycle time is 1 seconds.	
	=1 , PWM cycle time is 2 seconds. (System default)=2 , PWM cycle time is 4 seconds.	
	=3 , PWM cycle time is 8 seconds.	
	=4 , PWM cycle time is 16 seconds.	
	\geq 5 · PWM cycle time is 32 second.	
wher Note 2: The	n changing the value of R4005, the execution control "EN" of FUN86 must be set at 0. In execution control "EN" =1, it will base on the latest set point to perform the PID calculat smaller the cycle time of PWM, the more even can it perform the heating. However, th is PLC scan time will also become greater. For the best control, it can base on the sca	ion. e error caused
-	just the solution interval of PID calculation and the PWM cycle time.	

FUN 86 TPCTL	PID TEMPERATURE CONTROL INSTRUCTION	FUN 8 TPCT
● R4006:	The setting point of large power output detection for SSR or heating circuit opened, or obsolete. The unit is in % and the setting range falls in $80 \sim 100(\%)$; system default is	•
● R4007:	The setting time to detect the continuing duration of large power output while SSR or h opened, or heating band obsolete. The unit is in second and the setting range falls i (seconds); system default is 600 (seconds).	-
● R4008:	The setting point of highest temperature warning for SSR, or heating circuit short det unit is in 0.1 degree and the setting range falls in $100 \sim 65535$; system default is 3500°).	
● R4012:	Each bit of R4012 to tell the need of PID temperature control. Bit0=1 means that 1 st point needs PID temperature control. Bit1=1 means that 2 nd point needs PID temperature control.	
	 Bit15=1 means that 16th point needs PID temperature control. (The default of R4012 is FFFFH) 	
● R4013:	Each bit of R4013 to tell the need of PID temperature control. Bit0=1 means that 17 th point needs PID temperature control. Bit1=1 means that 18 th point needs PID temperature control.	
	Bit15=1 means that 32 th point needs PID temperature control. (The default of R4013 is FFFFH)	
bit of F	execution control "EN"=1 and the corresponding bit of PID control of that point is ON (co 24012 or R4013 must be 1), the FUN86 instruction will perform the PID operation and re tion with the output signal.	-
	execution control "EN"=1 and the corresponding bit of PID control of that point is OFF (co 24012 or R4013 must be 0), the FUN86 will not perform the PID operation and the outpur OFF.	-
	der program may control the corresponding bit of R4012 and R4013 to tell the FUN86 perform the PID control, and it needs only one FUN86 instruction.	to perform

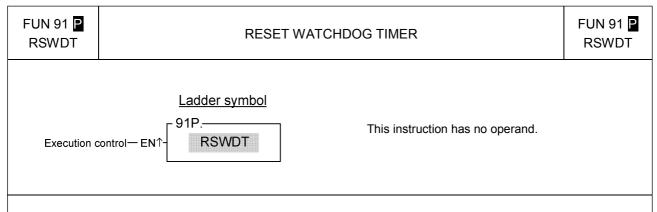

is only permissible when enable control "EN" = 1. With this instruction, when timing control "TIM" is 1, it is the same as a basic timer, but when "TIM" is 0, it does not clear, but keeps the current value. If the timer need to clear, then change enable control "EN" to 0. When timing control "TIM" is once again to be 1, it will continue to accumulate from the previous value when the timer last paused. In addition, this instruction also has two outputs, "Time up TUP" (when time up it is 1, usually it is 0) and "Time not up" (usually it is 1, when time is up it is 0). Users can utilize input and output combinations to produce timers with various different functions. For example:

• On delay energizing timer:



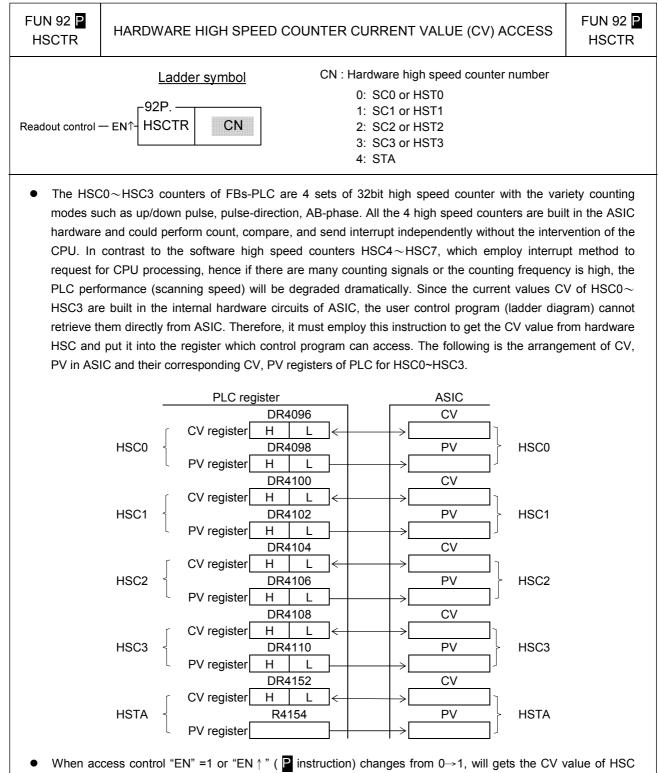
 This timer's output (Y0 in this example) is normally not energized. When this timer's input control (X0 in this example) is activated (ON), only after delay by 10 sec will output Y0 become energized (ON).

• On delay de-energizing timer:



 The output Y0 of this timer is usually energized. When this timer's input control X0 is on, only after delay by 10 sec will the output become de-energized (OFF).

FUN 90 P WDT	WATCHDOG TIMER	FUN 90 P WDT
Execution contr	Ladder symbol 90P. N : The watchdog time. The range of N i bl — EN↑- WDT N	s 5∼120, unit

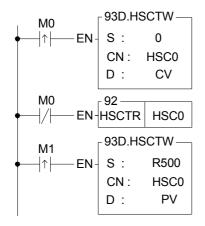

- When execution control "EN" = 1 or "EN ↑" (p instruction) transition from 0 to 1, will set the watchdog time to Nx10ms. If the scan time exceeds this preset time, PLC will shut down and not execute the application program.
- The WDT feature is designed mainly as a safety consideration from the system view for the application. For example, if the CPU of PLC is suddenly damaged, and there is no way to execute the program or refresh I/O, then after the WDT time expired, the WDT will automatically switch off all the I/Os, so as to ensure safety. In certain applications, if the scan time is too long, it may cause safety problems or problems of non-conformance with control requirements. This instruction can used to establish the limitation of the scan time that you require.
- Once the WDT time has been set it will always be kept, and there is no need to set it again on each scan. Therefore, in practice this instruction should use the **P** instruction.
- Default WDT time is 0.25 sec.
- For the operation principles of WDT please refer to the RSWDT(FUN 91) instruction.

- When execution control "EN" = 1 or "EN ↑ " (P instruction), the WDT timer will be reset (i.e. WDT will start timing again from 0).
- The functions of WDT have already been described in FUN90 (WDT instruction). The operation principles of watch dog timer are as follows:

The watchdog timer is normally implemented by a hardware one-shot timer (it can not be software, otherwise if CPU fail, the timer becomes ineffective, and safeguards are quite impossible). "One-shot" means that after triggered the timer once, the timing value will immediately be reset to 0 and timing will restart. If WDT has begun timing, and never triggered it again, then the WDT timing value will continue accumulating until it reach the preset value of N, at that time WDT will be activated, and PLC will be shut down. If trigger the WDT once every time before the WDT time N has been reached, then WDT will never be activated. PLC can use this feature to ensure the safety of the system. Each time when PLC enters into system housekeeping after finished the program scanning and I/O refresh, it will usually trigger WDT once, so if the system functions normally and scan time does not exceed WDT time then WDT is never activated. However, if CPU is damaged and unable to trigger WDT, or the scan time is too long, then there will not be enough time to trigger WDT within the period N, WDT will be activated and will shut off PLC.

 In some applications, when you set the WDT time (FUN90) to desire, the scan time of your program in certain situations may temporarily exceed the preset time of WDT. This situation can be anticipated and allowed for, and you naturally do not wish PLC to shut down for this reason. You can use this instruction to trigger WDT once and avoid the activation of WDT. This is the main purpose of this instruction.

- When access control "EN" =1 or "EN ↑" (instruction) changes from 0→1, will gets the CV value of HSC designated by CN from ASIC and puts into the HSC corresponding CV register (i.e. the CV of HSC0 will be read and put into DR4096 or the CV of HSC1 will be read and put into DR4090.
- Although the PV within ASIC has a corresponding PV register in CPU, but it is not necessary to access it (actually it can't be) for that the PV value within ASIC comes from the PV register in CPU.
- HSTA is a timer, which use 0.1ms as its time base. The content of CV represents elapse time counting at 0.1mS tick.
- For detailed applications, please refer to Chapter 10 "The high speed counter and high speed timer of FBs-PLC".


FUN 93 P HSCTW

HARDWARE HIGH SPEED COUNTER CURRENT VALUE AND PRESET VALUE WRITING

FUN 93 P HSCTW

Ladder symbol	S : The source data for writing
Ladder symbol 93DP.HSCTW- Write control – EN↑- S : CN :	 CN : Hardware high speed counter to be written 0: HSC0 or HST1 1: HSC1 or HST2 2: HSC2 or HST3
D :	3: HSC3 or HST44: HSTAD : Write target (0 represents CV, 1 represents PV)

- Please refer first to FUN92 for the relation between the CV or PV value of HSC0~HSC3 and HSTA within ASIC and their corresponding CV and PV registers in CPU.
- When write control "EN"=1 or "EN↑" (instruction) changes from 0→1, it writes the content of CV or PV register of high speed counter designed by CN of CPU, to the corresponding CV or PV of HSC within ASIC.
- It is quit often to set the PV value for most application program, When the count value reaches the preset value, the counter will send out interrupt signal immediately. By way of the interrupt service program, you can implement different kinds of precision counting or positioning control.
- When there is an interrupt of power supply for FBs-PLC, the values of current value registers CV of HSC0~ HSC3 within ASIC will be read out and wrote into the HSC0~HSC3 CV registers (with power retentive function) of CPU automatically. When power comes up, these CV values will be restored to ASIC. However, if your application demands that when power is on, the values should be cleared to 0 or begin counting from a certain value, then you have to use this instruction to write in the CV value for HSC in ASIC.
- When write a non-zero value into the PV register of HSTA will cause the HSTAI interrupt subroutine to be executed for every PV × 0.1ms.
- For detailed applications, please refer Chapter 10 "The high speed counter and high speed timer of FBs-PLC".

- As the program in the left diagram, when M0 changes from 0→1, it clears the current value of HSC0 to 0, and writes into ASIC hardware through FUN93.
- When M0 is 0, it reads out the current counting value.
- When M1 changes from 0→1, it moves DR500 to DR4098, and writes the preset value into ASIC hardware through FUN93.
- Whenever the current value equals to the DR500, The HSC0I interrupt sub program will be executed.

FUN 94 ASCWR	ASCII WRITE	FUN 94 ASCWR
Output control – Pause control – Abort output –	-PAU - S : Pt : ERR - Error S : Starting register of file data. Pt : Starting working register for the instance. It taken up 8 register	sage. his instruction ers and can't
r. 	Range WX WY WM WS TMR CTR HR IR OR SR ROR DR HR wx0 WY0 WM0 WS0 T0 C0 R0 R3840 R3904 R3967 R5000 D0 O md Wx240 WY240 WM1896 WS984 T255 C255 R3839 R3903 R3967 R4167 R8071 D4095 1 MD	
 S file da explanat directly b (the deta "ERR" to is set to 		ne ASCII file CII file format the error flag ted and "DN"
instructic During th	rol input of this instruction is of positive edge triggered. Once "EN \uparrow " changes from 0 n starts the execution, until finished the transmission of the entire file then the execution te transmission, the action flag "ACT" will be kept at 1 all the time. Only when output pacture, will it change back to 0.	is completed.
	ruction can be repeatedly used, but only one will be executed (transmit data) at any cert ation of user to make sure the right execution sequence.	ain time. It is
	s instruction is in execution, if the pause "PAU" is 1, this instruction will pause the transm ill resume transmission when the pause "PAU" backs to 0.	nission of file
	s instruction is in execution, if the abort "ABT" is 1, this instruction will abandon the tra and then it is able to take next instruction for execution.	nsmission of

• or detail applications, please refer to chapter 14 "The Application of ASCII file output function".

FUN 94 ASCWR	ASCII WRITE	FUN 94 ASCWR
 Interface 	signals:	
M1927: 1	his signal is control by CPU, it is applied in ASCWR MD:0	
: (DN, it represents that the RTS (connect to the CTS of PLC) of the printer is "False".	
	I.e. the printer is not ready or abnormal.	
: (DFF, it represents that the RTS of the Printer is "True"; Printer is Ready.	
Note: Us	ing the M1927 associates with timer can detect if the printer is abnormal or not.	
R4158: T	he setting of communication parameters (refer to section 11.7.2)	

FUN 95 RAMP			RA	MP FU	NCTI	ON FO	DR D/	A OU	TPUT				FI
Ramp control –	- en↑- ¶ P	95.RAN n : 'V :	symbol /IP	-ERR		PV : S∟ :	or the Lowe (ramp	t value increr limit v	e of rar ment v value value).	np tim alue of	-		0.01 sec second
Pause control — Jp/Down output —	S	υ:		- ASL		D+1 : S _U , S	(ramp Regis Worki	ceilin ter sto ng reg be po	ister sitive o	urrent r		-	e. hen incor
Jp/Down output —	- U/D - [υ:	WM			D+1 : S _U , S	(ramp Regis Worki ∟ coulc	ceilin ter sto ng reg be po	ring cu ister sitive (urrent r		-	
Jp/Down output – Ran Ope-	ge WX WX0	U : D : WY WY0	WM WM0 WM1896	- ASU	_	D+1 : S _U , S with <i>i</i>	(ramp Regis Worki L could AO mo HR R0	ceilin ter sto ng reg be pc dule a IR R3840	ring cu ister sitive of pplicat OR R3904	irrent r or nega ion.	ROR R5000	alue w	hen incor
Jp/Down output – Ran Ope- rand Tn	ge WX WX0	U : D : WY WY0	WM0 WM1896	- ASU WS WS0		D+1: S _U , S with A	(ramp Regis Worki coulc AO mc HR R0 R3839	ceilin ter sto ng reg be pc dule a IR R3840	ring cu ister sitive o pplicat OR R3904	or negation.	ROR R5000 R8071	alue w	hen incor K 16-bit
Jp/Down output – Ran Ope- rand Tn PV	ge WX WX0	U : D : WY WY0	WM0 WM1896	ASU WS WS0 WS984	TMR T0 T255	D+1: S _U , S with A	(ramp Regis Worki L coulc AO mc HR R0 R3839	ceilin ter sto ng reg be pc dule a R3840 R3903	ring cu ister sitive of pplicat OR R3904 R3967	SR R3968 R4167	ROR R5000 R8071	alue w DR D0 D4095	hen incor K 16-bit
Jp/Down output – Ran Ope- rand Tn	ge WX WX0	U : D : WY WY0	WM0 WM1896	- ASU WS WS0		D+1: S _U , S with A	(ramp Regis Worki coulc AO mc HR R0 R3839	ceilin ter sto ng reg be pc dule a IR R3840	ring cu ister sitive o pplicat OR R3904	or negation.	ROR R5000 R8071	alue w	hen incor K 16-bit


Description

- Tn must be a 0.01 sec time base timer and never used in other part of program.
- PV is the preset value of ramp timer. Its unit is 10ms (0.01 second).
- When input control "EN \uparrow " changes from 0 \rightarrow 1, it first reset the timer Tn to 0.

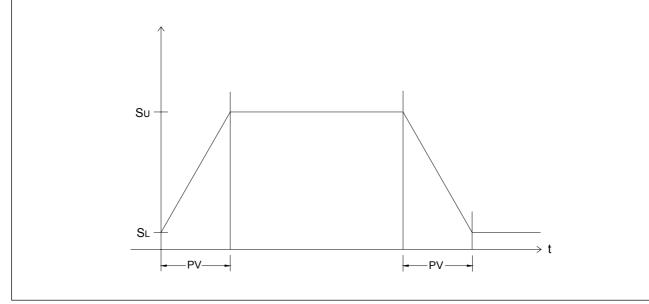
When "U/D"=1 it will load the value of SL to register D. And when M1974 = 0 it will be increased by S_U-S_L / PV every 0.01 sec or when M1974 = 1 it will increase by PV every 0.01 sec. When the D value reaches the S_U value the output "ASU" =1.

When "U/D"=0 it will load the value of S_U to register D. When M1974 = 0 it will be decreased by S_U-S_L / PV every 0.01 sec or when M1974 = 1 it will be decreased by PV every 0.01 sec. When the D value reaches the S_L value the output "ASL" =1.

- The ramping direction(U/D) is determined at the time when input control "EN ↑" changes from 0→1. After the output D start to ramp, the change of U/D is no effect.
- If it is required to pause the ramping action, it must let the input control "PAU" = 1; when "PAU"=0, and the ramping action is not completed, it will continue to complete the ramping action.
- The value of S_U must be larger than S_L, otherwise the ramp function will not be performed, and the output "ERR" will set to 1.
- This instruction use the register D to store the output ramping value; if the application use the D/A module to send the speed command, then speed command can be derived from the RAMP function to get a more smooth movement.
- In addition to use register D to store the ramping value, this instruction also used the register D+1 to act as internal working register; therefore the other part of program can not use the register D+1.

T20: Ramp timer (timer with 0.01 second time base)

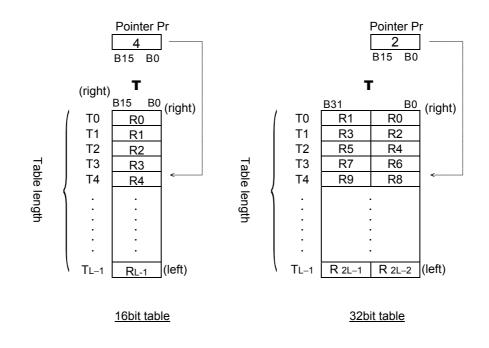
R100: preset value of ramp timer (the unit is 0.01 second, 100 for a second).


R101: Lower limit value.

R102: Upper limit value.

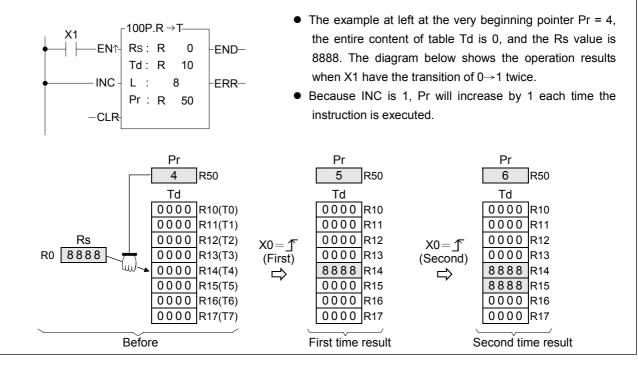
R103: Register storing current ramp value.

R104: Working register

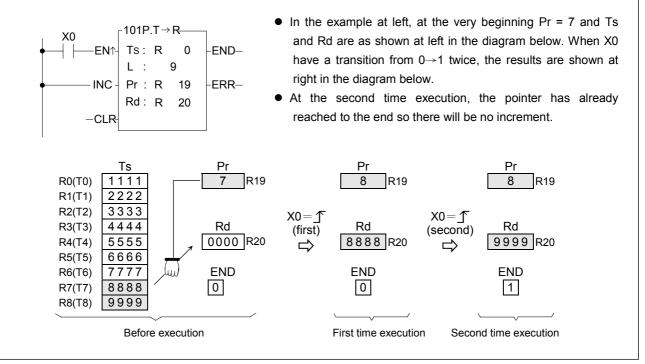

- If M1974=0, When input control M0 changes from 0→1, it first reset the timer T20 to 0. If M2=1, it will load the R101 (lower limit) value into the R103, and it will increase the output with fixed value (R102-R101 / R100) for every 0.01 second and stores it to register R103. When the T2 timer going up to the preset value R100, the output value equals to R102, and the output M102 will set to 1. If M2=0, will load the R102 (upper limit) value into the R103, and it will decrease the output amount with fixed ratio (R102-R101 / R100) for every 0.01 second and store it to register R103. The T2 timer going up to the preset value R100, the output value equals to R102, and the output amount with fixed ratio (R102-R101 / R100) for every 0.01 second and store it to register R103. The T2 timer going up to the preset value R100, the output value equals to R102, and the output M101 will set to 1.
- M1=1, pause the ramping action.
- The value of R102 must be greater than R101, otherwise the ramp action will not be performed, and the output M100 will set to 1.

Fun No.	Mnemonic	Functionality	Fun No.	Mnemonic	Functionality
100	R→T	Register to table data move	107	T_FIL	Table fill
101	T→R	Table to register data move	108	T_SHF	Table shift
102	T→T	Table to table data move	109	T_ROT	Table rotate
103	BT_M	Block table move	110	QUEUE	Queue
104	T_SWP	Block table swap	111	STACK	Stack
105	R-T_S	Register to table search	112	BKCMP	Block compare
106	T-T_C	Table to table compare	113	SORT	Data Sort

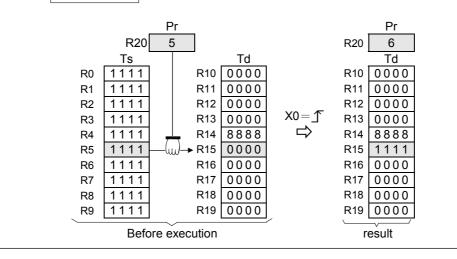
Table Instructions


- A table consists of 2 or more consecutive registers (16 or 32 bits). The number of registers that comprise the table is called the table length (L). The operation object of the table instructions always takes the register as unit (i.e. 16 or 32 bit data).
- The operation of table instructions are used mostly for data processing such as move, copy, compare, search etc, between tables and registers, or between tables. These instructions are convenient for application.
- Among the table instructions, most instructions use a pointer to specify which register within a table will be the target of operation. The pointer for both 16 and 32-bit table instructions will always be a 16-bit register. The effective range of the pointer is 0 to L-1, which corresponds to registers T₀ to T_{L-1} (a total of L registers). The table shown below is a schematic diagram for 16-bit and 32-bit tables.
- Among the table operations, shift left/right, rotate left/right operations include a movement direction. The direction toward the higher register is called left, while the direction toward the lower register is called right, as shown in the diagram below.

FUN100 D				RE	GIST	ER 1	ΓΟ ΤΑ	BLE N	IOVE				F	UN100 R→T
Move control Pointer increment		-100E Rs : Td : L :		Г - Е			to end er error		Td:So L:Le Pr:Po	ource r ength o ointer r	egister f destii egister	for des	constant stination able /, Z, P0~	table
Pointer clear	— CLR	Pr :										ddress		
N			WM	ws	TMR	CTR	HR							XR
Pointer clear Range Ope- rand	WX WX0	WY WY0	WM WMO	WS0	T0	C0	R0	IR R3840	OR R3904	r as inc SR R3968	direct a	ddress	ing	1
Range Ope-	WX WX0	WY WY0	WM	WS0	T0	C0	R0	IR	registe OR	r as inc SR	ROR R5000	DR D0	ing K 16/32bit +/-	XR V · Z
Range Ope- rand	WX WX0 WX240	WY WY0	WM WM0 WM1896	WS0	T0	C0	R0	IR R3840	OR R3904	r as inc SR R3968	ROR R5000 R8071 	DR D0	K 16/32bit +/- number	XR V · Z
Range Ope- rand Rs	WX WX0 WX240	WY WY0 WY240	WM WM0 WM1896	WS0 WS984	T0 T255	C0 C255	R0	IR R3840	OR R3904 R3967	r as ind SR R3968 R4167	ROR R5000 R8071	DR D0 D4095	K 16/32bit +/- number	XR V · Z P0~P9

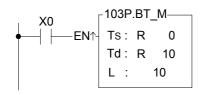

(length is L). Before executing, this instruction will first check the pointer clear "CLR" input signal. If "CLR" is 1, it will first clear the pointer Pr, and then carry out the move operation. After the move has been completed, it will then check the Pr value. If the Pr value has already reached L-1 (point to the last register in the table) then it will only set the move-to-end flag "END" to 1, and finish execution of this instruction. If the Pr value is less than L-1, then it must again check the pointer increment "INC" input signal. If "INC" is 1, then Pr value will be also increased. Besides, pointer clear "CLR" is able to operate independently, without being influenced by other input.

The effective range of the pointer is 0 to L-1. Beyond this range, the pointer error "ERR" will be set to 1, and this instruction will not be performed.



FUN101 D 				TA	BLE	TO R	EGIS	TER N	IOVE				F	FUN101 T→F	
Move contro Pointer increme	nt—PAU	- 101E - Ts - L - Pr Rd	:	R			e to end er error		L : L Pr : P Rd : D Ts, Ro	ength o ointer i estinat I may o	of source register ion reg combin	ce table - ister e with \	register e V, Z, P0 lication	~P9 to	
Pointer clea	r—CLR	1													
Rang	e WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR	
Ope- rand	WX0	WY0 WY240	WM0 WM1896	WS0 WS984	T0 T255	C0 C255		R3840 R3903	R3904 R3967			D0 D4095	16/32bit +/- number	V ∖ Z P0~P9	
Ts	0	0	0	0	0	0	0	0	0	\bigcirc	0	0		0	
L							0				O*	0		0	
Pr		\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc		0	O*	0*	0	2~2048		
					-					*	*				

- When move control "EN" = 1 or "EN ↑" (instruction) transition from 0 to 1, the value of the register Tspr specified by pointer Pr within source table Ts (length is L) will be written into the destination register Rd. Before executing, this instruction will first check the input signal of pointer clear "CLR". If "CLR" is 1, it will first clear Pr and then carry out the move operation. After completing the move operation, it will then check the value of Pr. If the Pr value has already reached L-1 (point to the last register in the table), then it sets the move-to-end flag to 1, and finishes executing of this instruction. If Pr is less than L-1, it check the status of "INC". If "INC" is 1, then it will increase Pr and finish the execution of this instruction. Besides, pointer clear "CLR" can execute independently and is not influenced by other inputs.
- The effective range of the pointer is 0 to L-1. Beyond this range the pointer error "ERR" will be set to 1 and this instruction will not be carried out.



T-	02 D P →T				TA	BLE -	το τ <i>ι</i>	ABLE	MOVE	Ē				I	FUN10 T-	
Pointe	Nove control	— PAU	-102[- Ts Td - L Pr	<u>der sym</u> DP.T→ ⁻ : :	Γ	ND−N RR−P			To L Pr Ts	d : Star reç : Tab : Poir s, Rd	ting nu jister le (Ts nter reg may c	umber and To gister ombin	of des d) leng	tinatio th V, Z	ble regi n table , P0~P	
	Range	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	К	XR	1
	Ope- rand	WX0 	WY0 WY240	WM0 WM1896	WS0 WS984	T0 T255	C0 C255	R0 R3839	R3840 R3903		R3968 R4167	R5000 R8071	D0 D4095	2 2048	V \ Z P0~P9	
	Ts	0	0	0	0	0	0	0	0	0	0	0	0		0	
	Td L		0	0	0	0	0	0		0	○*	○* ○*	0	0	0	
	Pr		0	0	0	0	\bigcirc	-		~	()*		Õ			
14	/hon main	00 mtm-		- 1 "			0		o t		-	0^ to 1_1	0	ioto = 7		
by de fii w ta le e: T	/hen move y pointer Pr estination t rst clear Pr ill then che able), then i ess than L- xecution. B he effective nd this instr	r within able. E to 0 a ck the it will s 1, it wi esides e range	the so Before e nd then value o et the i ill chec , pointe e of the	urce tabl execution of do the of pointer move-to- k the sta er clear "(e pointer	N ↑ " (e will be , it will f move (i Pr. If t end flag tus of " CLR" ca is 0 to l	instr e move first ch in this he Pr v "END "INC". n exec	ruction ed to a eck th case 1 value f value f " to 1 If "INC cute inc) have regista e input rs0→T nas alm and fir c" is 1, depend	er Tdpr t signa d0). A eady r hish ex then dently,	sition f , whicl I of po fter the eached ecutin the Pr and w	from 0 n also inter c e move d L-1 (j g of th value ill not b	pointed lear "C e actio point to is instr will bo we influ	the reg d by th CLR". If n has l o the la ruction. e incre	e poin f "CLF been o ast reg . If the eased by oth	iter Pr i R" is 1, comple gister o Pr val by 1 b her inpu	n th it w ted n th lue efoi ut.

FUN103 BT_N					В	LOC	K TA	BLE N	IOVE							03 D P Г_М
Move	control —	-1 EN↑- T	03DP.	<u>symbo</u> BT_M-	_		Td	: Star	ting req	jister fo gister f	or dest	tinatior		s		
			_ :					•							e indire	
	Range	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	Κ	XR	
		WX0	WY0	WM0	WS0	T0	C0	R0	R3840	R3904	R3968	R5000	D0	2	V · Z	
	Ope- rand	WX240	WY240	WM1896	WS984	T255	C255	R3839	R3903	R3967	R4167	R8071	 D4095	256	P0~P9	
	Ts	0	0	0	0	0	0	0	0	0	0	0	\bigcirc	200	\bigcirc	
	Td		0	Ō	Ō	Ō	Ō	Ō		Ō	O *	O *	Ō		Ō	
	L							0				0*	0	0		
	this instru										-					ו was

- When move control "EN" = 1 or "EN ↑ " (instruction) have a transition from 0 to 1, all the data from source table Ts (length L) is copied to the destination table Td, which is the same length.
- One table is completely copied every time this instruction is executed, so if the table length is long, it will be very time consuming. In practice, P modifier should be used to avoid time waste caused by each scan repeating the same movement action.

 The diagram at left below is the status before execution. When X0 from 0→1, the content of R0~R9 in Ts table will copy to R10~R19.

R0 R1 R2 R3 R4 R5 R6 R7 R8	Ts 0000 1111 2222 3333 4444 5555 6666 7777 8888	$ \begin{array}{c} \longrightarrow & \text{R10} \\ \longrightarrow & \text{R11} \\ \longrightarrow & \text{R12} \\ \longrightarrow & \text{R13} \\ \longrightarrow & \text{R14} \\ \longrightarrow & \text{R15} \\ \longrightarrow & \text{R16} \\ \longrightarrow & \text{R17} \\ \longrightarrow & \text{R18} \end{array} $	Td 0000 0000 0000 0000 0000 0000 0000 0	X0=∫ ⊄>	R10 R11 R12 R13 R14 R15 R16 R17 R18	Td 0000 1111 2222 3333 4444 5555 6666 7777 8888
R8 R9	8888 9999	\longrightarrow R18 \longrightarrow R19	0000		R18 R19	8888 9999
		pre executed		/	Ex	esult

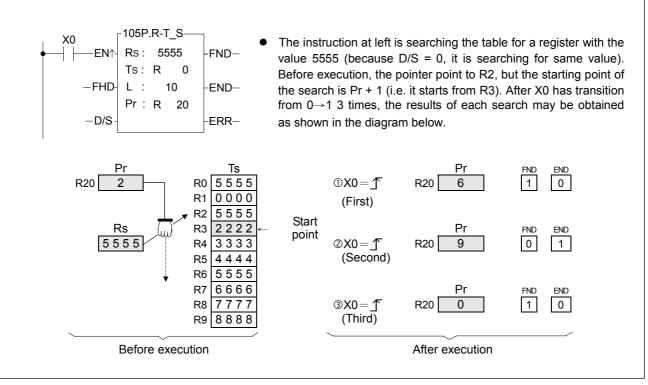
N104 D T_SWP	P				BLO	CK TA	BLE S	SWAP					FL	JN104 T_SW
Move con	ntrol — EN↑	Г ^{104Е}	der sym DP.T_S\					Tb:S L:L Ts, Ro	Starting engths I may c	registe registe of Tab combine ess app	er of Ta ble a ar e with \	able b nd b √, Z, P	0~P9 tc) serve
	Range		WM	WS	TMR	CTR	HR	OR	SR	ROR	DR	K	XR	
	Ope-	WY0	WM0	WS0	то	C0	R0	R3904	R3968	R5000	D0	2	V、Z	
	rand Ta	WY240	WM1896	WS984	T255	C255	R3839	R3967	R4167	R8071	D4095	256	P0~P9	
	Tb	0	0	0	0	0	0	0	0*	0*	0		0	
	L						0			O*	0	0		
and Ta This in	move contr able b will b astruction w is big, it wil	e comp ill swaj	letely sw o all the	/apped registe	ers spe	cified i	in L ea	ch time	e the ir	nstructi	on is e			
-	X0 	_ ^{104P.}	T_SWP-		-	● The Wh	diagra	am at	left be	low is	the st			executio
		Td: L:				300	ap with	R10~F	R19.					table w

Before executed

 \bigcirc

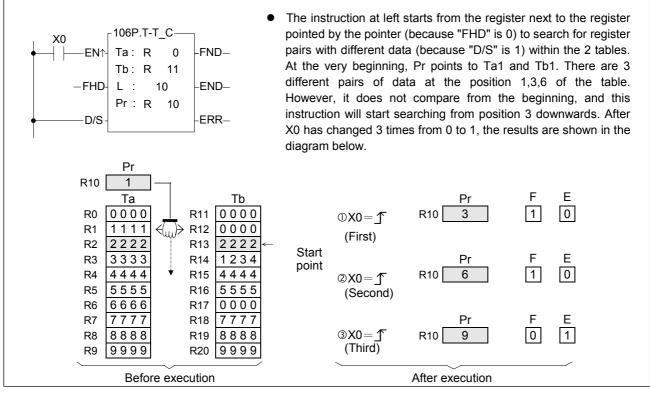
R19 1111

0000


R9

1111 R19 0000

R9


FUN105 D P R-T_S				RE	GIST	ER T	o tae	BLE SI	EARC	Н				FUN105 R-T_	
Search cor Search from h Different/same op	Pr : Rs, Ts may combine with V serve indirect address appli										er of table e e with V, 2	being Z, P0~P9			
Range	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR	
Ope- rand	WX0	WY0 WY240	WM0 WM1896	WS0 WS984	T0 T255	C0 C255	R0 R3839			R3968 R4167		D0 D4095	16/32-bit +/- number	V ∖ Z P0~P9	
Rs	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Ts	\bigcirc	\bigcirc	0	\bigcirc	0	\bigcirc	0	0	0	0	0	0		0	
L							0				0*	0	2~256		
Pr		0	0	\bigcirc	\bigcirc	\bigcirc	0		0	O*	O*	0			

- When search control "EN" = 1 or "EN ↑ " (instruction) has a transition from 0 to 1, will search from the first register of Table Ts (when "FHD" = 1 or Pr value has reached L-1), or from the next register (Tspr + 1) pointed by the pointer within the table ("FHD" = 0, while Pr value is less than L-1) to find the first data different with Rs(when D/S = 1) or find the first data the same with Rs (when D/S = 0). If it find a data match the condition it will immediately stop the search action, and the pointer Pr will point to that data and found objective flag "FND" will set to 1. When the searching has searched to the last register of the table, the execution of the instruction will stop, whether it was found or not. In that case the search-to-end flag "END" will be set to 1 and the Pr value will stop at L-1. When this instruction next time is executed, Pr will automatically return to the head of the table (Pr = 0) before the search begin.
- The effective range of Pr is 0 to L-1. If the value exceeds this range then the pointer error flag "ERR" will change to 1, and this instruction will not be carried out.

FUN106 D P T-T_C		TABLE TO TABLE COMPARE													06 D
	Ladder symbol														
	_106DP.T-T_C Ta∶ Starting register of Ta										of Tab	ole a			
Compare o	control — EN↑ Ta : FND — Found objective Tb : Starting register of Ta									of Tab	ole b				
		Т	b :						l	. : Lei	ngths c	of Table	•		
Compare from	head — F														
		F	Pr:)~P9 to
Different/Same	option — E				FER	R — F	Pointer	error	ę	serve i	ndirect	addres	ss app	lication	
_	WX	L WY	WM	WS		CTR	HR	IR	OR	SR	ROR	DR	К	XR	
Ra	nge VVX WX0	WY0	WMO	WS0	TO		R0	R3840			R5000	DR D0	2	V v Z	
Ope-														• 2	
rand	WX240	WY240	WM1896	WS984	T255	C255	R3839	R3903	R3967	R4167	R8071	D4095	256	P0~P9	
Та	0	0	0	\bigcirc	0	0	\bigcirc	\circ	\circ	\bigcirc	\bigcirc	0		0	
Tb	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	0		\bigcirc	
L							\circ				○*	0	0		
Pr		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	0*	0*	\bigcirc			

- When comparison control "EN" = 1 or "EN ↑ " (is instruction) has a transition from 0 to 1, then starting from the first register in the tables Ta and Tb (when "FHD" = 1 or Pr value has reached L-1) or starting from the next pair of registers (Tapr+1 and Tbpr+1) pointed by Pr ("FHD" = 0, while Pr is less than L-1), this instruction will search for pairs of registers with different values (when "D/S" = 1) or the same value (when "D/S" = 0). When search found (either different or the same), it will immediately stop the search and the pointer Pr will point to the register pairs met the search criteria. The found flag "FND" will be set to 1. When it has searched to the last register of the table, the instruction will stop executing. whether it found or not. The compare-to-end flag "END" will be set to 1, and the pointer value will stop at L-1. When this instruction is executed next time, Pr will automatically return to the head of the table to begin the search.
- The effective range of Pr is 0 to L-1. The Pr value should not changed by other programs during the operation. As this will affect the result of the search. If the Pr value not in the effective range, the pointer error flag "ERR" will be set to 1, and this instruction will not be carried out.

FUN107 D P T_FIL		TABLE FILL												FUN107 D P T_FIL
Fill control — E	_10)7DP.1 s :	symbol F_FIL			-	register erve indirect							
Range	WX e	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	К	XR
Ope-	WX0	WY0	WM0	WS0	T0	C0	R0	R3840	R3904	R3968	R5000	D0	16/32-bi +/-	it V · Z
rand	WX240	WY240	WM1896	WS984	T255	C255	R3839	R3903	R3967	R4167	R8071	D4095	number	r P0~P9
Ts Td	0	0	0	0	0	0	0	0	0	○ ○*	 ★	0	0	0
L			0		0	0	0		0		0*	0	2~256	
 This instrustion should be 		ith the l		tion. _FIL 5555	ing the	• table	The i	nstruct	ion at	left wi	ll fill 5	555 in		whole table
		I	Rs 5555		7 R2 7 R3 → R4 → R5 → R6 → R7 → R8	Td 1547 2314 7725 0013 5247 1925 6744 5319 9788 2796		≪0=1° ⇔	귀 귀 귀 귀 귀 귀 귀	80 55 81 55 82 55 83 55 84 55 85 55 86 55 88 55	d 555 555 555 555 555 555 555 555 555 5			

After execution

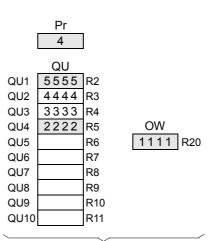
Before execution

FUN108 D P T_SHF			TABLI	E SHII	FT						FUN108 T_SH
Shift control — EN Left/Right direction — L Range WX Ope- rand WX24 IW O Ts O Td L OW	Ts : Td : L : OW :	F	CTR C0 	Ts : Td : L : OW : Ts, T addre	consta Sourc Destir Lengtl Regis d may ess ap IR R3840	nt or a e table nation t hs of ta ter to a	regista able st ables T accept ne with n SR R3968	er toring s s and the shi n V, Z, N, Z,	shift re Td fted ou P0~PS DR D0	sults ut data	
 When shift control be taken out and created by the shout will be written X0 X1 X1 	shifted one posit ift operation will b into OW. 108P.T_SHF— ↑- IW : R 10 Ts : R 0	tion to the lease filled by	eft (wh IW and IW and Ir Ir It: o si	hen "L/ d the ro h the herefo self (th peratio hift to r	R" = 1 esults progra re, the e table n (let) ight op) or to will be am at table table must X1 = 1 peratio	the rig writter left, T shifts be wri , and 2 n (let 2	ght (wi n into t itself t able) K0 go t K1 = 0	hen "L able T and ti . It firs from 0- , and n	/R'' = 0 d. The s the s hen wri t perfore \rightarrow 1) the nakes X). The roo
(Shif R10 1 2	t left) R1 1 R2 2 R3 3	1 1 1 2 2 2		OW	,	R0 R1 R2 R3	(Shift I Td(Ts <u>1 2 3</u> 0 0 0 1 1 1 2 2 2	s) 4 0 1	(Sh R0 R1 R2 R3 R4	ift right) Td(Ts) 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4) <u>)</u> 1 2 3

FUN109 D P T_ROT	TABLE ROTATEFUN109T_RC									
Rotate contro Left/Right directio	Td :	Ts : Source table for rotate Td : Destination table storing results of rotat L : Lengths of table Ts, Td may combine with V, Z, P0~P9 to se address application								
Rar Ope- rand Ts Td L	WX0 WY0 WM0 WS0 T0 C0		XR V \ Z P0~P9 O							
Ts will be		tion) has a transition from 0 to 1, the data from 1)or 1 position to the right (when "L/R" = 0). The In the program at left, Ts and Td is the same table after rotation will write back to itself. If one left rotation (let X1 = 1, and X0 go from then performs one right rotation (let X1 = 0) from $0\rightarrow$ 1). The results are shown at right in below.	The results of ne table. The t first perform m $0 \rightarrow 1$), and D, and X0 go							
	Rotate left Rotate right Ts(Td) R0 0 0 0 0 (right) R1 1 <th1< th=""> 1 1 <th1< <="" td=""><td>(Rotate left) (Rotate right) Td(Ts) Td(Ts) R0 9999 R1 0000 R1 1111 R2 1111 R2 1222 R3 2222 R3 333 R4 3333 R4 4444 R5 5555 R6 5555 R6 6666 R7 6666 R7 777 R8 8888 R9 9999 ①First time ②Second time</td><td></td></th1<></th1<>	(Rotate left) (Rotate right) Td(Ts) Td(Ts) R0 9999 R1 0000 R1 1111 R2 1111 R2 1222 R3 2222 R3 333 R4 3333 R4 4444 R5 5555 R6 5555 R6 6666 R7 6666 R7 777 R8 8888 R9 9999 ①First time ②Second time								

	0 D P UE						Ql	JEUE							FUN11 QUE	
				er symbo 2.QUEU							or a r	egiste	r	queue, ca	n be a co	onsta
Executio	n control —		IW :			рт — С	Queue	empty		QU :	QU : Starting register of queue					
			QU :					. ,		L :	Size o	f queu	ie			
In/O	ut control —				FEI	JL — (Dueue			Pr :	Pointe	r regis	ster			
11/00			Pr:				20000				Regist from (j data pop	ped out	
			OW :		- EF	R— F	Pointer	error			iay coi ct add			′, Z, P0∼P tion	9 to serv	'e
	Range	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR	
		WX0	WY0	WMO	WS0	T0	C0	R0	R3840	R3904	R3968	R5000	D0	16/32-bit	V 、 Z	
	Ope- rand	WX240	WY240	WM1896	WS984	T255	C255	R3839	R3903	R3967	R4167	R8071	D4095	+/- number	P0~P9	
	IW	0	0	0	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0		
-	QU		0	0	0	0	0	0		0	0	* *	0	2~256	0	
-	L Pr		0	0	0	0	0	0		0	O *	* *	0	2~230		
	OW		Õ	Õ	Õ	0	0	0		0	O*	<u> </u>	0			
out from the queue. A queue is comprised of L consecutive 16 or 32 bit registers (D instruction) starting from the QU register, as in the diagram below:														will be the struction)		
		-	. A que	eue is co	mprise											
		-	. A que	eue is co	mprise		. cons									
		-	. A que	eue is co	mprise		cons	ecutiv Pr								
	e QU regist	ter, as	. A que	eue is co	mprise	QU1	- cons	Pr 4 QU 4	e 16 d							
	QU regist	ter, as	. A que	eue is co diagram	mprise	QU1 QU2	- cons @444 @333	Pr 4 QU 4 3 Pi								
	QU regist	ter, as	. A que	eue is co	mprise	QU1 QU2 QU3	@444 3333 2222	Pr 4 QU 4 3 Pt 2 dd	e 16 d	br 32 t	bit regi				starting f	
	QU regist	ter, as	. A que in the o push	eue is co diagram	omprise below:	QU1 QU2 QU3	- cons @444 @333	Pr 4 QU 4 3 Pt 2 dd		br 32 t				struction)	starting f	
	QU regist	ter, as	. A que in the o push / alwa	eue is co diagram	omprise below:	QU1 QU2 QU3 QU4	@444 3333 2222	Pr 4 QU 4 3 Pt 2 dd		br 32 t		sters	(D ins	struction)	starting f	
	QU regist	ter, as	. A que in the o push	eue is co diagram	omprise below:	QU1 QU2 QU3 QU4	@444 3333 2222	Pr 4 QU 4 3 Pt 2 dd		br 32 t	bit regi	sters	(D ins	struction)	starting f	
	QU regist	1.IW QU1 2.Pr the	. A que in the o push / alwa I ·+1→F	eue is co diagram	n into	QU1 QU2 QU3 QU4 QU5	@444 3333 2222	Pr 4 QU 4 3 Pt 2 dd		Pr 32 t		sters (I/O=0 OW	(D ins	struction)	starting f	
	© ~ ©is	1.IW QU1 2.Pr the	. A que in the o push / alwa I ·+1→F	eue is co diagram	n into	QU1 QU2 QU3 QU4 QU5	@444 3333 2222	Pr 4 QU 4 3 Pt 2 dd		Pr 32 t	pit regi	sters (I/O=0 OW	(D ins	struction)	starting f	

remained in the queue.

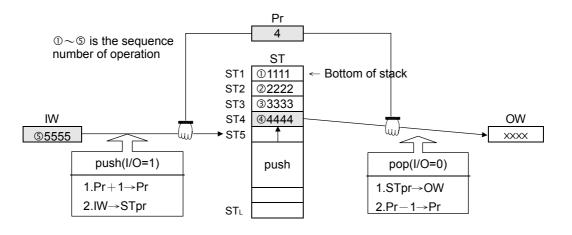

FUN110 D P QUEUE	QUEUE	FUN110 D P QUEUE	
---------------------	-------	---------------------	--

If no data has yet been pushed into the queue or the pushed in data has already been popped out (Pr = 0), then the queue empty flag will be set to 1. In this case, even if there is further popping out action, this instruction will not be executed. If data is only pushed in and not popped out, or pushed in is more than that popped out, then the queue finally becomes full (pointer Pr indicates the QU_L position), and the queue full flag is changed to 1. In this case, if there is more pushing in action, this instruction will not execute. The pointer for this instruction is used during access of the queue, to indicate the data that was pushed in the earliest. Other programs should not be allowed to change it, or else an operation error will be created. If there is a specific application, which requires the setting of a Pr value, then its permissible range is 0 to L (0 means empty, and 1 to L respectively correspond to QU1 to QUL). Beyond this range, the pointer error flag "ERR" will be set as 1, and this instruction will not be carried out.

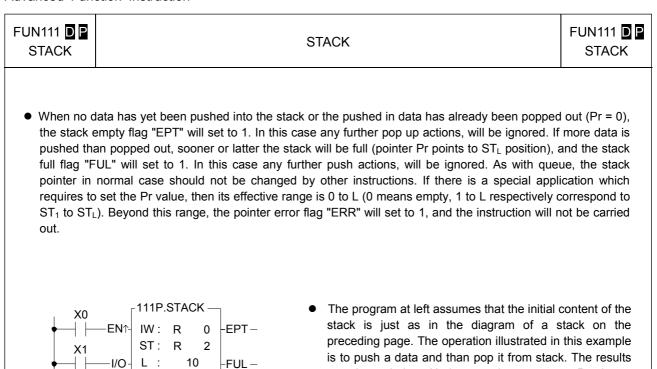
X0	-110P.0	QUI	EUE—	
	IW :	R	0	-EPT-
X1	QU :	R	2	
↓ I/O -			10	-FUL —
	Pr :	R	1	
	OW :	R	20	-ERR-

• The program at left assumes the queue content is the same with the queue at preceding page. It will first perform queue push operation , and then perform pop out action. The results are shown below. Under any circumstance, Pr always point to the first (oldest) data that was remained in queue.

	Pr		
	5		
	QU	_	
QU1	5555	R2	
QU2	4444	R3	
QU3	3333	R4	
QU4	2222	R5	OW
QU5	1111	R6	xxxx R20
QU6		R7	
QU7		R8	OW unchanged
QU8		R9	
QU9		R10	
QU10		R11	



After push in (X1=1 \cdot X0 from 0 \rightarrow 1)


After pop off (X1=0 \cdot X0 from 0 \rightarrow 1)

UN111 D P STACK						ST	ACK						F	UN111 STAC
Execution contro	ST : L : Pr : OW : ERR – Pointer error							 Pr : Pointer register OW : Register accepting data popped out from stack ST may combine with V. Z. P0~P9 to serve 						
Range	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
Ope- rand	WX0	WY0 WY240	WM0 WM1896	WS0 WS984	T0 T255	C0 C255	R0 R3839	R3840 R3903		R3968 R4167	R5000 R8071	D0 D4095	16/32-bit +/- number	V \ Z P0~P9
IW	0	\bigcirc	0	0	0	0	0	0	0	0	0	0	0	
ST		\bigcirc	0	\bigcirc	\bigcirc	0	\bigcirc		\bigcirc	0*	0*	\bigcirc		\bigcirc
							\bigcirc				O*	\bigcirc	2~256	
L		\bigcirc	0	0	\bigcirc	\circ	\bigcirc		\bigcirc	* *	0*	\bigcirc		
Pr OW			Ō	-										

Stack is the opposite of queue, being a last in first out (LIFO) device. This means that the data that was most recently pushed into the stack will be the first to be popped out of the stack. The stack is comprised of L consecutive 16 or 32-bit (D instruction) registers starting from ST, as shown in the following diagram:

• When execution control "EN" = 1 or "EN ↑" (instruction) has a transition from 0 to 1, the status of in/out control "I/O" determines whether the IW data will be pushed into the stack (when "I/O" = 1), or the data pointed by Pr within the stack (the data most recently pushed into the stack) will be moved out and transferred to OW (when "I/O" = 0). Note that the data pushed in is stacking, so before pushed in, Pr will increased by 1 to point to the top of the stack then the data will be pushed in. When it is popped out, the data pointed by pointer Pr (the most recently pushed in data) will be transferred to OW. After then Pr will decreased by 1. Under any circumstances, the pointer Pr will always point to the data that was pushed into the stack most recently.

is to push a data and than pop it from stack. The results are shown below. Under any circumstances, Pr always point to the data that was most recently pushed into the stack.

	Pr	-	
	5	R1	
	ST	1	
ST1	1111	R2	
ST2	2222	R3	
ST3	3333	R4	
ST4	4444	R5	OW
ST5	5555	R6	_{XXXX} R20
ST6		R7	\uparrow
ST7		R8	OW unchanged
ST8		R9	
ST9		R10	
ST10		R11	

Pr: R

OW: R

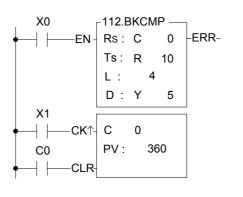
1

20

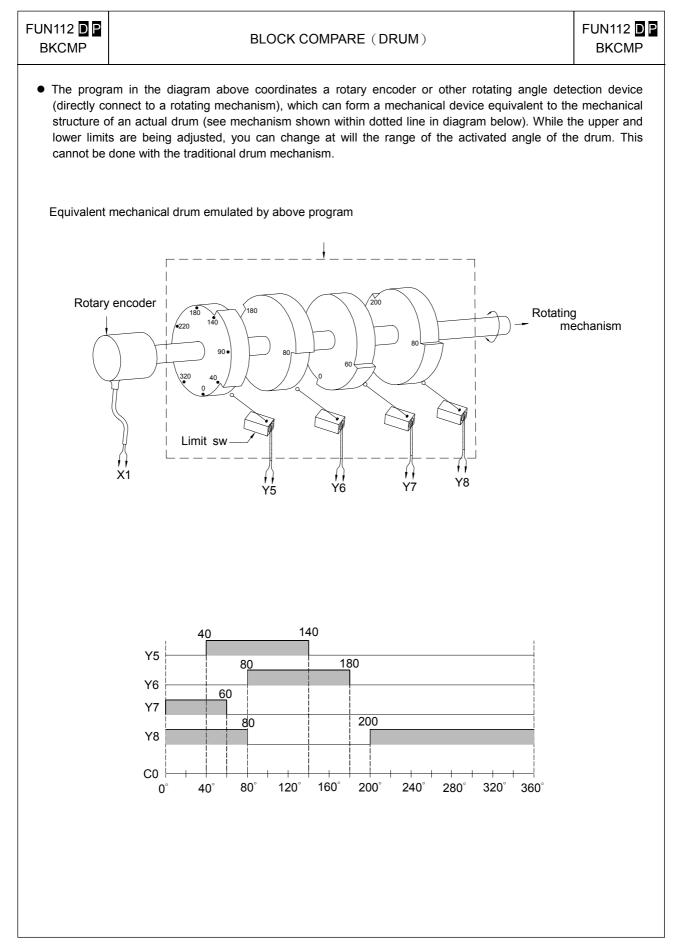
-ERR-

After push(X1=1 , X0 from $0 \rightarrow 1$)

	Pr 4]	
	QU		
ST1	1111	R2	
ST2	2222	R3	
ST3	3333	R4	
ST4	4444	R5	WO
ST5		R6	5555 R20
ST6		R7	
ST7		R8	
ST8		R9	
ST9		R10	
ST10		R11	


After pop up(X1=0 , X0 from $0 \rightarrow 1$)

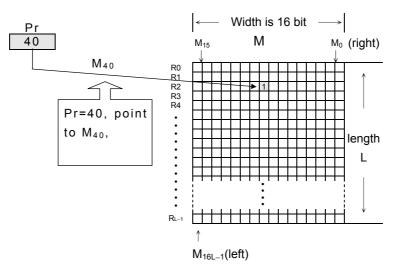
FUN112 D BKCMP	MP BLOCK COMPARE (DRUM)															FUN112 D BKCMP			
	Ladder symbol Rs : Data for compare, can be a c register Comparison control – ENT Rs : ERR – Limit error To a Otaction control – ENT															tant or a			
Comparison control — EN↑- Rs : - ERR−Limit error Ts : Starting register block storing upper and lower limit															per and				
L : L : Number of pairs of upper and														and lov	nd lower limits				
) :							Starting compa		' storin	g resul	ts of				
Range	Y	М	S	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	К			
Ope- rand	Y0 	M0 M999	S0 S999	WX0 WX240	WY0 WY240	WM0 WM1896	WS0 WS984	T0 T255	C0 C255	R0 R3839			R3968 R4167	R5000 R8071	D0 D4095	16/32-bit +/- number			
Rs				0	0	0	0	0	\bigcirc	\bigcirc	0	0	0	0	0	\bigcirc			
Ts				\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0				
L										0				0*	0	1~256			
D	\bigcirc	\cap	\cap																


- When comparison control "EN" = 1 or "EN ↑ " (is instruction) has a transition from 0 to 1, comparisons will be perform one by one between the contents of Rs and the upper and lower limits form by L pairs of 16 or 32-bit (is modifier) registers starting from the Ts register (starting from T0 each adjoining 2 register units form a pair of upper and lower limits). If the value of Rs falls within the range of the pair, then the bit within the comparison results relay D which corresponds to that pair will be set to 1. Otherwise it will be set as 0 until comparison of all the L pairs of upper and lower limits is completed.
- When M1975=0, if there is any pair where the upper limit value is less than the lower limit value, then the limit error flag "ERR" will be set to 1, and the comparison output for that pair will be 0.
- When M1975=1, there is no restriction on the relation of upper limit and lower limit, this can apply for 360° rotary electronic drum switch application.


	Upper limit	Lower limit	Compare	Compared		Result
0	T _{S1}	T_{S0}	\longleftrightarrow	value	\longrightarrow	D ₀
1	T _{S3}	T _{S2}	\longleftrightarrow		\longrightarrow	D ₁
ζ	2	2	2	Rs	2	2
L–1	T_{S2L-1}	T _{S2L-2}	\longleftrightarrow		\longrightarrow	D_{L-1}

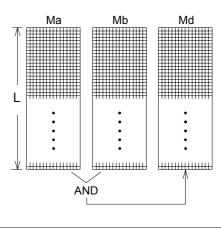
• Actually this instruction is a drum switch, which can be used in interrupt program and when incorporate with immediate I/O instruction (IMDIO) can achieve an accurate electronic drum.

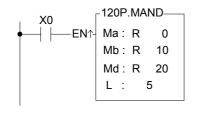
- In this program, C0 represents the rotation angle (Rs) of a drum shaft. The block compare instruction performs a comparison between Rs and the 4 pairs (L = 4) of upper and lower limits, R10,R11, R12,R13, R14,R15 and R16,R17. The comparison results can be obtained from the four drum output points Y5 to Y8.
- The input point X1 is a rotation angle detector mounted on the drum shaft. With each one degree rotation of the drum shaft angle, X1 produces a pulse. When the drum shaft rotates a full cycle, X1 produces 360 pulses.

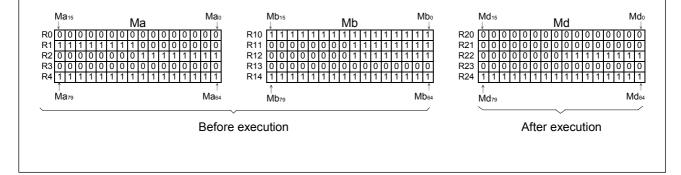


FUN114 P Z-WR							ZO	NEW	RITE							N114 -WR	D
Operation contr Write Selection		EN↑-	_114	4P.Z-\ :	symbol WR ——	-ERR	. —	Ν	:Quan Nc	ng add tity of t peranc ressing	being s 1 can	et oe ro combi	eset, 1 [,] ne V	~511 、Z 、F	- 20~P9	for inc	xət
	Y	М	S	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	К	XR	
Range	Y0	MO	S0	WY0	WM0	WS0	TO	CO	R0	R3840	R3904	R3968	R5000	D0		V · Z	
Operand	 Y255	 M1911	 S99	 WY240	 WM1896	WS984	 T255	C255	 R3839	R3903	R3967	R4167	R8071	D4095		P0~P9	
D	\bigcirc	\bigcirc	\bigcirc	0	0	0	\bigcirc	0	0	0	0	0	\bigcirc	0		\bigcirc	
N									\bigcirc				\bigcirc	\bigcirc	1-511	\bigcirc	
- 1/0	n acc D"=0) N - [[D - []	2007din) or se 14.Z-V D : N :	ng to et to WR - R 1	the in 1("1/0 20 0	put stat "=1). ERR–	us of w	vrite s	- electio	n, the :								
	N - [] D - []	14.Z-\) : \ :	WR - M 7	15 -	ERR-												

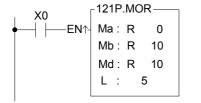
Fun No.	Mnemonic	Functionality	Fun No.	Mnemonic	Functionality
120	MAND	Matrix AND	126	MBRD	Matrix Bit Read
121	MOR	Matrix OR	127	MBWR	Matrix Bit Write
122	MXOR	Matrix XOR	128	MBSHF	Matrix Bit Shift
123	MXNR	Matrix XNOR	129	MBROT	Matrix Bit Rotate
124	MINV	Matrix Inverse	130	MBCNT	Matrix Bit Count
125	MCMP	Matrix Compare			

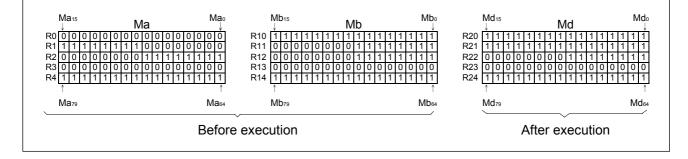

Matrix Instructions

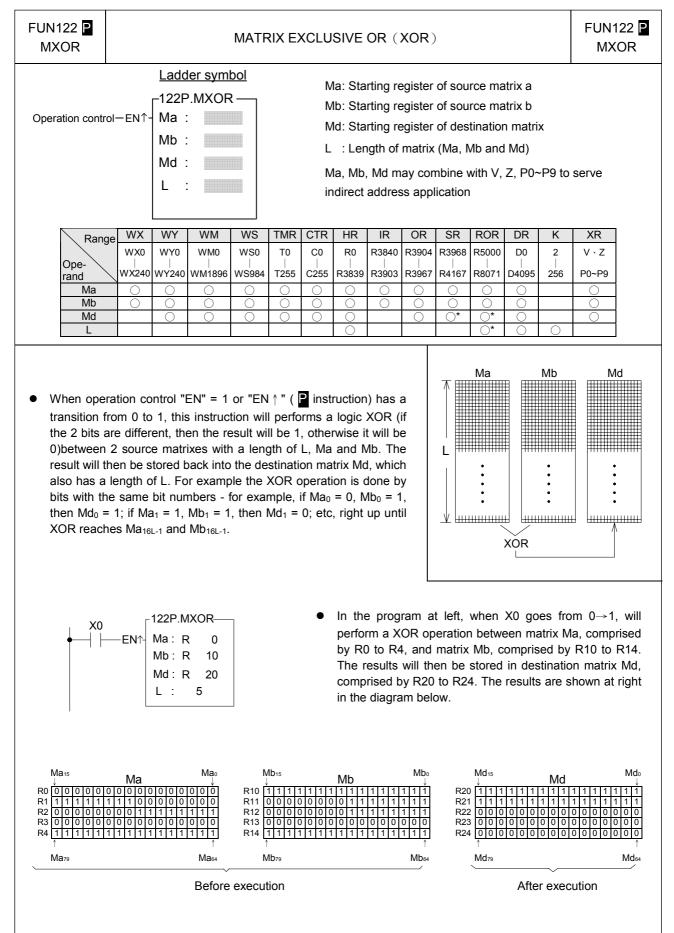

- A matrix is comprised of 2 or more consecutive 16-bit registers. The number of registers comprising the matrix is called the matrix length (L). One matrix altogether has Lx16 bits (points), and the basic unit of the object for each operation is bit.
- The matrix instructions treats the 16×L matrix bits as a set of series points(denoted by M₀ to M_{16L-1}). Whether the matrix is formed by register or not, the operation object is the bit not numerical value.
- Matrix instructions are used mostly for discrete status processing such as moving, copying, comparing, searching, etc, of single point to multipoint (matrix), or multipoint-to-multipoint. These instructions are convenient, important for application.
- Among the matrix instructions, most instruction need to use a 16-bit register as a pointer to points a specific point within the matrix. This register is known as the matrix pointer (Pr). Its effective range is 0 to 16L-1, which corresponds respectively to the bits M₀ to M_{16L-1} within the matrix.
- Among the matrix operations, there are shift left/right, rotate left/right operations. We define the movement toward higher bit is left direction, while the movement toward lower bit is right direction, as shown in the diagram below.


FUN12 MAN	_					М	ATRI	X AN	C							I120 <mark>P</mark> AND
			Ladde	er symbo	<u>)</u>											
		г	120P.I	MAND_	_			Ma: S	tarting	regist	er of s	source	matrix	a		
Operation	on control -	-EN↑-	Ma :					Mb: S	tarting	regist	er of s	source	matrix	сb		
			Mb:					Md : S	tarting	regis	ter of o	destina	ation m	natrix		
			Md :					L :L	ength	of mat	rix (Ma	a, Mb	and M	d)		
			L :					Ma, M	b, Md	may c	ombir	e with	V, Z,	P0~P9) to serv	e
			с.					indired	t addr	ress ap	oplicat	ion				
																_
	Range	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR	
	000	WX0	WY0	WM0	WS0	T0	C0	R0	R3840	R3904	R3968	R5000	D0	2	V × Z	
	Ope- rand	WX240	WY240	WM1896	WS984	T255	C255	R3839	R3903	R3967	R4167	R8071	D4095	256	P0~P9	
	Ма	0	0	\bigcirc	0	\bigcirc		\bigcirc								
	Mb	0	0	0	0	0	0	0	0	0	0	0	0		0	
	Md L		0	0	0	0	0	\bigcirc		0	O *	* *	0	0	0	
	L							\cup	l	l	l	\cup	\cup	\cup		
	en operat										▼≣	Ma		Mb		Md

transition from 0 to 1, this instruction will perform a logic AND (only if 2 bits are 1 will the result be 1, otherwise it will be 0)operation between two source matrixes with a length of L, Ma and Mb. The result will then be stored in the destination matrix Md, which is also the same length (the AND operation is done by bits with the same bit numbers). For example, if $Ma_0 = 0$, $Mb_0 = 1$, then $Md_0 = 0$; if $Ma_1 = 1$, $Mb_1 = 1$, then $Md_1 = 1$; etc, right up until AND reaches Ma_{16L-1} and Mb_{16L-1} .




In the program at left, when X0 goes from 0→1, then matrix Ma, comprised by R0 to R4, and matrix Mb, comprised by R10 to R14, will do an AND operation. The results will be stored back in matrix Md, comprised by R20 to R24. The result is shown at right in the diagram below.



MOR					ſ	MATF	rix oi	R						FUN1 MC
Operation control	I— EN↑-	_121F		bol			Mb: Md: L : Ma, M	Startin Startin Startin Length Mb, Md ect add	g regis g regis i of ma l may c	ster of steries (Market Steries Sterie	source destina a, Mb ne with	e matriz ation n and M	x b natrix d)) to serve
Range	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	К	XR
	WX0	WY0	WM0	WS0	T0	C0	R0	R3840	R3904	R3968	R5000	D0	2	V × Z
Ope- rand	WX240	WY240	WM1896	WS984	T255	C255	R3839	R3903	R3967	R4167	R8071	D4095	256	P0~P9
Ma	0	0	0	0	0	0	0	0	0	0	0	0		0
Mb	\bigcirc	0	0	0	0	0	0	\bigcirc	0	0	0	0		0
Md L		0	0	0	0	0	0		0	0*	* *	0	0	0
 When operative transition from 2 of the bits will the result length of L, destination 	om 0 to are 1, ult be 0 Ma ar matrix	1, this then th) opera nd Mb Md, w	instructione result ation bet . The re	on will p will be ween 2 sult wil also the	berforr 1, and sour 1 ther e san	m a lo d only ce ma n be ne ler	gic OF if bot atrixes stored ngth (t	R(If an h are (with a in the he OF	y D a e R		Ma ·		Mb	M

In the program at left, when X0 goes from 0→1, then matrix Ma, comprised by R0 to R4, and matrix Mb, comprised by R10 to R14, will do an OR operation. The results will then be stored into the destination matrix Md, comprised by R10 to R14. In this example, Mb and Md is the same matrix, so after operation the source matrix Mb will replaced by the new value. The result is shown at right in the diagram below.

	123 <mark>P</mark> (NR			N	/ATRI)	K EXC	CLUS	IVE N	ior (XNR)					23 <mark>P</mark> NR
Oper	ation control	—EN∱·	123F			Ma : Starting register of source matrix a Mb : Starting register of source matrix b Md : Starting register of destination matrix L : Length of matrix (Ma, Mb and Md) Ma, Mb, Md may combine with V, Z,P0~P9 to serv indirect address application										
	Range	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR	
	Trange	WX0	WY0	WM0	WS0	Т0	C0	R0	R3840	R3904	R3968	R5000	D0	2	V · Z	
	Ope- rand	WX240	WY240	WM1896	 WS984	 T255	 C255	 R3839	 R3903	 R3967	 R4167	 R8071	 D4095	 256	P0~P9	
	Ма	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0	0		0	
	Mb	0	0	0	0	0	0	0	\bigcirc	0	0	0	0		0	
	Md		0	0	0	0	0	0		0	0*	\sim	0		0	
	L							\bigcirc				()*	0	\bigcirc		
tr bi 0) re al	• When operation control "EN" = 1 or "EN \uparrow " () instruction) has a transition from 0 to 1, will perform a logic XNR operation (if the 2 bits are the same, then the result will be 1, otherwise it will be 0)between 2 source matrixes with a length of L, Ma and Mb. The results will then be stored into the destination matrix Md, which also has the same length (the XNR operation is done by bits with the same bit numbers). For example, if Ma ₀ = 0, Mb ₀ = 1, then Md ₀															

also has the same length (the XNR operation is done by bits with the same bit numbers). For example, if $Ma_0 = 0$, $Mb_0 = 1$, then Md_0 = 0; $Ma_1 = 0$, $Mb_1 = 0$, then $Md_1 = 1$; etc, right up until XNR reaches Ma_{16L-1} and Mb_{16L-1} .

0

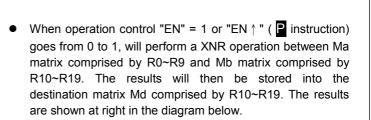
10

10

5

123P.MXNR

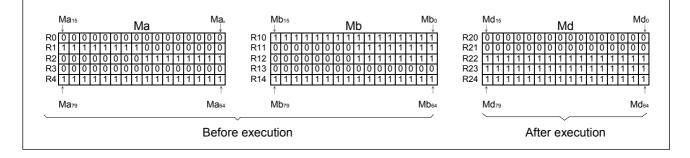
Ma: R


Mb: R

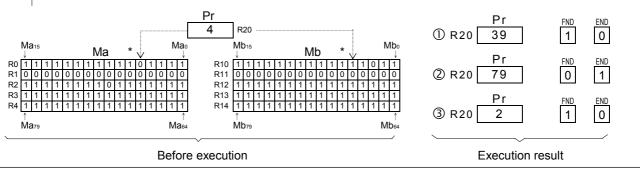
Md:R

L :

X0


-EN↑-

L.....


XNR

FUN124 P MINV					MAT	RIX I	NVER	SE						FUN124 P MINV
Operation contro	' E N ↑-		er symb				Md:S L :L Ma, N	starting ength	of mat	er of o rix (Ma ine wit	destina s and l	Vld)		erve indirect
Ran	wX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
Ope-	WX0	WY0	WM0	WS0	T0	C0	R0	R3840	R3904	R3968	R5000	D0	2	V · Z
rand Ms	WX240	WY240	WM1896	WS984	T255	C255	R3839	R3903	R3967	R4167	R8071	D4095	256	P0~P9
Md L		0	0	0	0	0	0	0	0	0*	0*	0	0	0
to 0, and will then b					-	e to 1).	The r	esults	-			Inv	verse Ms —	
×0 ∳ -		124P.N Ma: F Md: F L :	R 0			r s N	natrix store b //d are	compri ack in	ised by to itse same	y R0 t If (be matr	o R4 v cause ix). Tl	vill be in this ne res	invert exan	m 0 \rightarrow 1, the ed, and then hple Ms and obtained are
	R R	2 0 0 0 3 0 0 0	1 1 1 1 0 0 0 0	Ms 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1	0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1	Ms₀ ↓ 0 0 0 0 1 1 0 0 1 1 ↑ Ms ₆₄	R0 R1 R2 R3 R4	0 0 0 0 1 1 1 1	1111	Md 1 1 1 0 1 1 1 0 0 1 1 1 0 0 0	1 1 1 1 1 1 0 0 0 1 1 1 0 0 0	Md₀ 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 ↑ Md64		

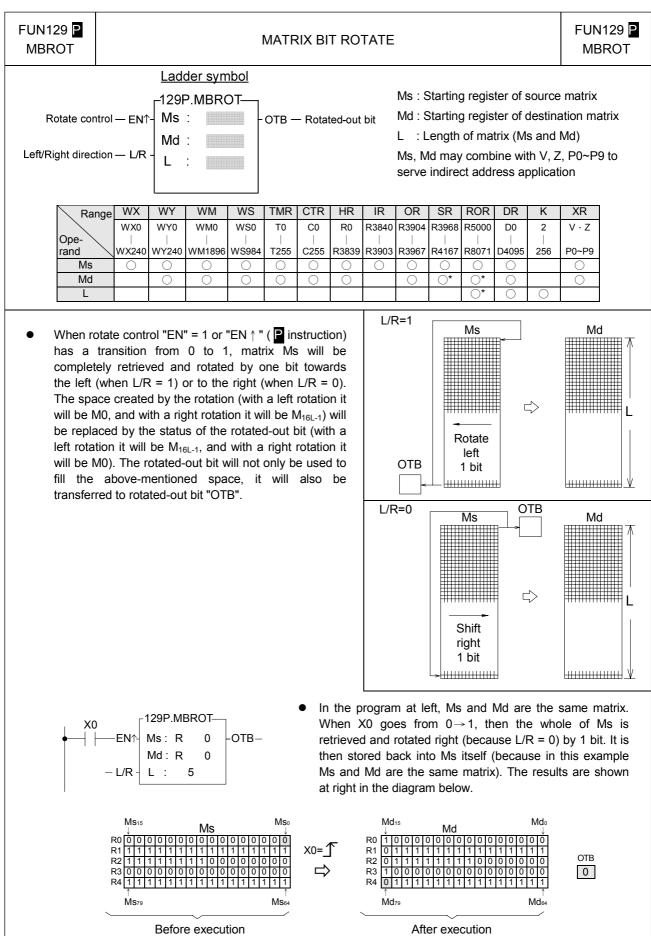
FUN125 P MCMP															
					MA	TRIX	COMF	ARE						FUN12 MCN	
		Ĺ	adder	symbol	<u> </u>										
		1	25P.M	CMP	_								<i>.</i>		
Comparison co	ntrol — F					D —Foi	und obie	octivo			-	gister o			
Companson co						5 100		SCIVE			-	gister o			
			/lb :								-	matrix	(Ivia, Iv	vid)	
Compare from I	nead — F	HD- [- :		- ENI	D — Co	mpare f	o end		r:Poir		•	·	(7 00	
		F	Pr:								-	address		V, Z, P0∼	P9 to
Different/Same o	ption — r	5/S -			ERF	R — Po	inter er	ror	50				s appli	cation	
								•••							
Range	_ WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR	
1 kuingk	WX0	WY0	WM0	WS0	Т0	C0	R0	R3840	R3904	R3968	R5000	D0	2	V · Z	
Ope-	WX240	WY240	 WM1896	WS984	 T255	C255	R3839	 R3903	 R3967	 R4167	R8071	 D4095	 256	P0~P9	
rand Ma	0	0	0	0	0	0200	0	\bigcirc	0	\bigcirc	\bigcirc	0	200	0	
Mb	0	0	Õ	Õ	0	0	0	0	0	0	0	0		0	
L							0				0*	0	0		
Pr		0	\bigcirc	\bigcirc	0	0	0		0	○*	○*	0			
and Mb ₀) wi value is equa + 1 and Mb value is less	al to 16L pr + 1) s than L	1), or pointe	[.] beginni d by po	ng from inter Pr	the ne	ext pai			r	N	/la			N	
(when D/S = number in th flag "FND" w bits in the m will finish, n compare-to-e to 16L-1 and automatically the comparis The range fo	= 0). On ne matrix vill be se natrix (M o matte end flag d the ne y return f son sear	ferent ace ma x met et to 1 la _{16L-1} , r it ha "END" ext tim to the ch.	value (v atch four the sear . When Mb _{16L-1} as found " will be e that th starting p	when D nd, poir rch con it has s), this e l or not set as nis instr point of	ill com /S = 1 hter Pr dition. earche execution L If thi 1, and ruction the matching	pare a) or th will p The fo ed to th on of t is hap the Pr is exe atrix (P	nd sea e sam oint to ound o he final the ins oen th value ecuted, r = 0) t	and P arch fo e value the bi bjective pair o truction en The will se Pr wi o begin	r L e L ff l n e L it l it l			Mapr		pr	

FUN126 P MBRD					MAT	RIX	BIT RI	EAD							N126 <mark>P</mark> 1BRD
Readout contr	ol — EN↑	_ ^{126₽}	<u>der sym</u> P.MBRD)	отв —	Outpu	ıt bit				ng regi	ster of	matrix	<	
Readout contr			•		516 -	Outpt					er regis				
Pointer increme	nt — INC	Pr		E F	END —	Read	to end			•		with V applica		0∼P9 t	o serve
Pointer clea	ar — CLR	-		- E	ERR —	· Point	er error								
Dan	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR	
Ran	ge wxo	WY0	WM0	WS0	то	C0	R0	R3840		R3968		D0	2	V · Z	_
Ope-															
rand Ms	0	0	WM1896	WS984	T255	0	R3839	R3903	C	R4167	0	04095	256	P0~P9	,
L		0	0	0		0	0	0	0		 *	0	0		_
Pr		0	0	0	0	0	Õ		0	O*	Ŏ*	Õ			
 value wi out. After reached be set t increme increase indepen The effer 	ne input - ill be clear er the rea 16L-1 (th o 1. If Pr nt "INC" ed by 1. I dently, ar ctive rang instructio	red to (dout is ne final is less will be Beside nd is no) first bef comple bit), then s than 1 checked s this, p t affecte e pointer	fore the ted, If f n the re 6L-1, th d. If "IN ointer o d by oth	e reado the Pr ead-to- hen th NC" is clear " her inp 16L-1	out ac value end fl e stat 1, th CLR" out.	tion is e has a ag "EN tus of en Pr can e	carried already ID" wil pointe will be xecute	d y r e e		• • • • • • • • • • • • • • • • • • •	flag "E	RR" w	vill be s	OTB
×0 - 	—EN↑- №	26P.ME //s: R _ : Pr: R	0 - 5 20 -	OTB END ERR		•	one r way o show times	eadou each b n at le	t the p bit in M eft in t 0→1,	ointer Vis ma the dia	will be y be r agram	increa ead o below	ased b ut suc . Whe	y 1. W cessiv n X0 g	here is ith this ely, as goes 3 in the
R1 0 0 0 0 R2 0 0 0 1	1 1 1 1 0 1 1 0 0 0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1	1 0 0 0 0 0 1 1 1 0 1 1	Ms₀ ↓ 0 0 0 1 1 1 1 1 0 0 0 1 0 0 1 1 1 0 1 0 ↑ Ms64	R20	7	Pr 7 7 0 0				① R2 ② R2 ③ R2	20 7 F 20 7 F	Pr 8 Pr 9 Pr 9		1 ОТВ Е О ОТВ Е	ND 0 ND 0 ND 1

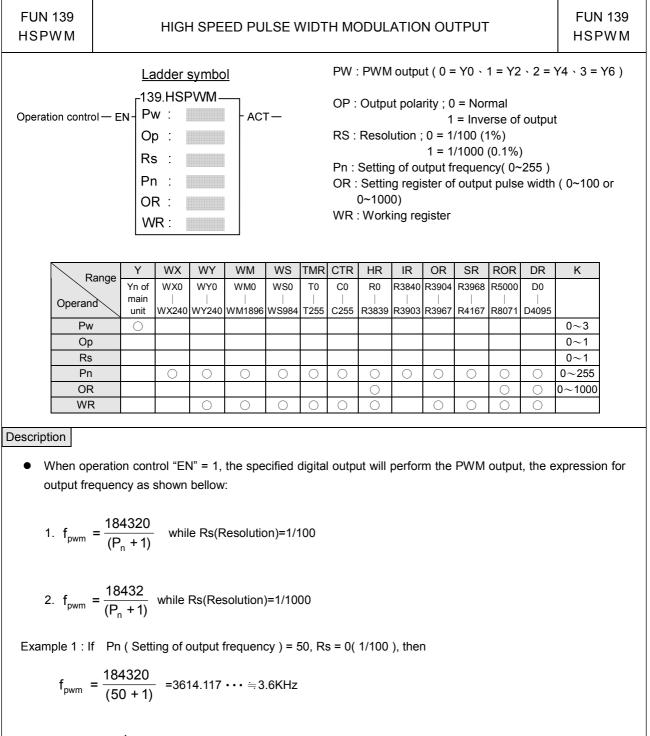
7-109

Execution result

Before execution


		MATRIX BIT WRITE										FUN127 MBWR		
Write Pointer incre	Ladder symbol Md : Starting register of matrix Write control — EN↑ Md : END — Write to end L : Matrix length Write-in bit — INB L : ERR — Pointer error Pr : Pointer register Her increment — INC Pr : ERR — Pointer error Md may combine with V, Z, P indirect address application							√, Z, P0 [,]	~P9 to serve					
	Range	WY	WM	WS	TMR	CTR	HR	OR	SR	ROR	DR	К	XR]
	Ope-	WY0	WM0	WS0	ТО	C0	R0	R3904	R3968	R5000	D0	2	V \ Z	
	rand	WY240		WS984		C255	R3839	R3967	R4167		D4095	256	P0~P9	_
	Md L	0	0	0	0	0	0	0	0	 ★	0	0	0	
	Pr	0	0	0	0	0	0	0	O*	O *	0)		-
the write-in action. After the write-in action has been completed, the Pr value will be checked again. If the Pr value has already reached 16L-1 (last bit), then the write-to-end flag will be set to 1. If the Pr value is less than 16L-1 and "INC" is 1, then the pointer will increased by 1. Besides this, pointer clear "CLR" can execute independently, and is not affected by other input.														
pointe	r will increa	e is les ised by	ss than / 1. Besi	16L-1 a des thi	and ' s, poir	nd flag 'INC" inter cle	will be s 1, tl ear "Cl	e set t nen th	o e					
pointe execu • The ef	r will increa te independ fective rang struction wil	e is les ased by dently, ge of F I not b	ss than y 1. Besi and is no Pr is 0 to e carried	16L-1 a des thi ot affec 16L-1.	and ' s, poir cted by	Id flag INC Inter cle other nd this	will be s 1, tl ear "Cl input. s range	e set t nen th .R" ca	o e n pointe		C			et to 1, and
pointe execuThe effective of the second s	r will increate independ fective rang struction wil EN↑_ M EN↑_ M	e is les ased by dently, ge of F I not b 27P.MB Is : R	es than y 1. Besi and is no er is 0 to e carried	16L-1 a des thi ot affec 16L-1.	and ' s, poir cted by	Id flag INC" inter clev other nd this Ir e b Il p c b	will be s 1, th ear "Cl input. s range t the p xecutio elow, " NB (X1 ointer ase, a een w	e set t nen th _R" ca e, the orogram on (be when) will Pr wi Ithoug ritten	n at le cause X0 ha be writ l incre into M	eft, poi "INC" s a tra tten in eased is poir ld ₇₉ , so	nter wi is 1). ansitior to the by 1 nting to p "ENI	ill be i As sh from Mdpr (chan o the D" flag	ncrease own in 0→1, t (Md ₇₈) p ging to end, it	d each time the diagram he status of position, and 79). In this has not yet 0. Only the

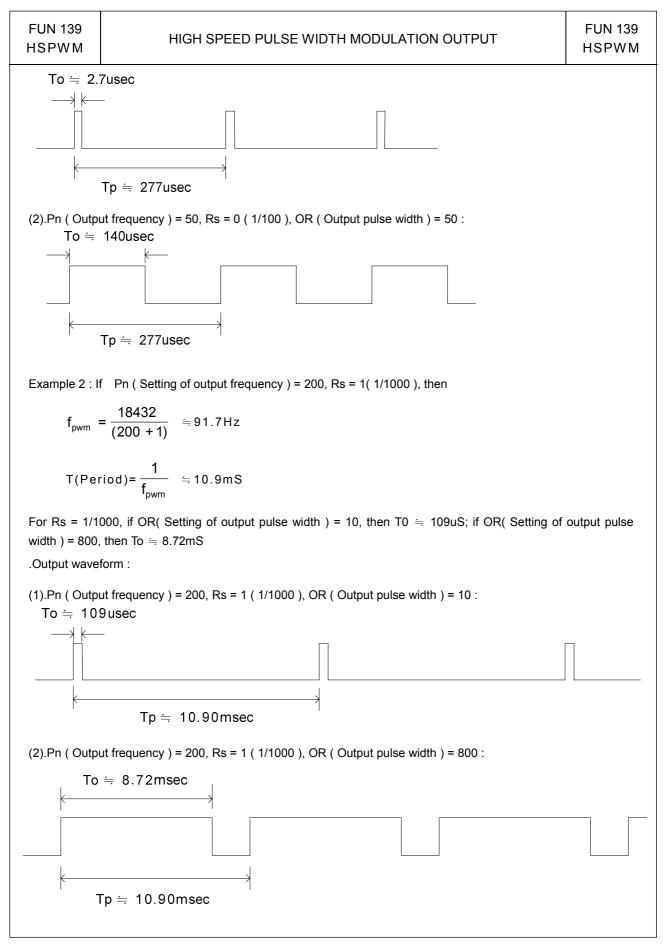
7-110


After execution

Before execution

FUN128 P MBSHF					MAT	RIX E	BIT SH	ΗFΤ						F	UN128 P MBSHF
		Lac	dder syn	nbol											
		-128	BP.MBS	HF—					Мс	. Star	tina re	nietor	of sou	irco m	atriv
Shift	control — EN	1		-	- ОТВ	— Shi	ft out b	it			-	-	of des		
		Md							IVIC	matri	-	gister	UI UES	anan	
Fi	ll-in bit — INC		-						L			matrix	(Ms a	nd Mo	d)
			-								-		-		, P0~P9
Left/Right di	direction — CLR - to serve indirect address application														
F	Range WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR	
	WX0	WY0	WM0	WS0	T0	C0	R0	R3840	R3904	R3968	R5000	D0	2	V × Z	<u>ː</u>
Ope- rand	WX240	WY240	WM1896	WS984	T255	C255	R3839	R3903	R3967	R4167	R8071	D4095	256	P0~P	9
	ls 🔿	0	0	0	0	0	0	\bigcirc	0	0	0	0		0	
	1d	0	0	0	0	0	0		0	0*	* *	0	0	0	_
	-	<u> </u>						ـــــــــــــــــــــــــــــــــــــ			\cup	\cup	\cup		
 transitiand contract of the second of the sec	shift control ion from 0 f pompletely shift one position d by the shift hift it will be B". The stat be M _{16L-1} , a r at the out d matrix will b rogram at le ame matrix. etely retrieve to bit. It will th own at right X0 X0 X0 X0 X0 X0 X0 X0 X0 X0 X0 X0 X0	to 1, s ifted on to the ft (with M_{16L-1}) us of th and with to the ft is and when the filled eff is and When ed and hen be in the of M_{16} M	ource m ne positi right (w a left sh), is repla ne bits p th a righ t "OTB". d into the Nord Stored b diagram P.MBSHF : R 0 : R 0	atrix M on to the hen L/ ift it will acced by opped nt shift Then e destin e destin e destin to the l ack to below.	Is will he left R = 0 I be M y the s out (w it will the re ation i ere Ms $0 \rightarrow 1$ left (be Md, an	be re (when). The M ₀ , and status with a le li be f esults matrix and I, Ms ecause	etrieven n L/R e space d with of fill-i eft shi M_0) w of the Md. Md ar will b e L/R	d = an ft III s e e =			Ms Shift I bit Ms Shift right 1 bit				
	Ms15 R0 0 0 0 R1 1 1 R2 1 1 1 R3 0 0 0 R4 0 1 1 Ms79	1 1 1 1 1 1 0 0 0 0 1 1 1 1	Ms 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 e executi	00000 11111 0000 0000 11111 000	Ms₀ ↓ 0 0 1 1 0 0 0 1 1 Ms₀4	x0=_] ⇔	~	Mc R0 011 R2 R3 R4 Mc	0 0 0 0 1 1 1 1 1 1 1 7 0 0 0 0 1 1 1 7	Md 0 0 0 0 1 1 1 7 1 1 1 0 0 0 0 0 1 1 1 7 er exe		1 1 1 0 0 0 0 0 0 0 0 1 1 1 1	Md₀ ↓ 0 1 1 0 0 1 0 1 0 1 0 1 0 1 Md₅4		

UN130 <mark>P</mark> MBCNT		MATRIX BIT STATUS COUNT											FUN130 MBCN	
Count cont 1 or 0 opti	Ladder symbol Ms : Starting register of matrix trol - EN ⁺ Ms : $D^{=0}$ - Result is 0 L : Matrix length trol - EN ⁺ L : $D^{=0}$ - Result is 0 D : Register storing count results ton - 1/0 D : Ms = D^{=0} - Result is 0 Ms may combine with V, Z, P0~P9 to serve indirect address application													
	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
Rar	WX0	WY0	WM0	WS0	TO	CO	R0			R3968		DO	2	V · Z
Ope- 🔨 rand	WX240	WY240	WM1896	WS984	T255	C255	R3839	R3903	R3967	R4167	R8071	D4095	256	P0~P9
Ms	0	0	0	0	0	0	0	0	0	0	○ ○*	0		0
L		0	0	0	0	0	0		0	O *	0* 0*	0	0	
∳	1/0 - <u> </u>	D:F	R 0					ram be						it right in th
R0 R1 R2 R3 R4	0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0	Ms 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0	MS0 ↓ 0 0 0 0 1 1 1 0 0 0 0 0 0 1 5 MSe4	x0= <u>1</u> ⇔			R20	D 64 X1=0		@ {	R20	D 16 X1= ⁻	1
	So	urce m	atrix				С	ount o	f '0' bil	t	С	Count c	f '1' bi	it



$$T(Period) = \frac{1}{f_{pwm}} = 277 uS$$

For Rs = 1/100, if OR(Setting of output pulse width) = 1, then T0 = 2.7uS; if OR(Setting of output pulse width) = 50, then To = 140uS.

.Output waveform :

(1).Pn (Output frequency) = 50, Rs = 0 (1/100), OR (Output pulse width) = 1:

FUN140 HSPSO	HIGH SPEED PULSE OUTPUT INSTRUCTION (Brief description on function)						CTION	FUN140 HSPSO
	Ladder symbo - EN↑- Ps : - INC - WR : - ABT -	<u> </u> - ACT — - ERR — - DN —		SR	0:Y 1:Y 2:Y 3:Y : Positi : Starti	0 & Y1 2 & Y3 4 & Y5 6 & Y7 oning ng wor 7 regis	5 5	-
Command desc		Range Ope- rand Ps SR WR	HR R0 R3839 C		ROR R5000 R8071	K 2 256 0~3		

- The NC positioning program of HSPSO (FUN140) instruction is a program written and edited with text. The
 executing unit of program is divided by step (which includes output frequency, traveling distance, and
 transferring conditions). For one FUN140 instruction, can program 250 steps of positioning points at the most.
 Each step of positioning program requires 9 registers. For detailed application, please refer to chapter 13 "the
 NC positioning control of FBs-PLC".
- The benefits of storing the positioning program in the register is that, while in application which use the MMI (man machine interface) as the operation console can save the positioning programs to MMI. Whenever the change of the positioning programs is requested, the download of positioning program can be simply done by a series of write register commands.
- The NC positioning of this instruction doesn't provide the linear interpolation function.
- When execution control "EN"=1, if Ps0~3 is not controlled by other FUN140 instruction (the status of Ps0=M1992, Ps1=M1993, Ps2=M1994, and Ps3=M1995 is ON respectively), it will start to execute from the next step of positioning point (when goes to the last step, it will be restarted from the first step); if Ps0~3 is controlled by other FUN140 instruction (the status of Ps0=M1992, Ps1=M1993, Ps2=M1994, and Ps3=M1995 are OFF), this instruction will wait and acquires the control right of output point immediately right after other FUN140 release the output.
- When execution control input "EN" =0, it stops the pulse output immediately.
- When output pause "PAU" =1 and execution control was 1, it will pause the pulse output. When output pause "PAU" =0 and execution control is still 1, it will continue the unfinished pulse output.
- When output abort "ABT"=1, it will halt and stop pulse output immediately. (When the execution control input "EN" becomes 1 next time, it will restart from the first step of positioning point to execute.)
- While send the output pulse, the output indication "ACT" is ON.
- When there is an execution error, the output indication "ERR" will be ON. (The error code is stored in the error code register.)
- When the execution of each step of positioning program is completed, the output indication "DN" will be ON.
- The working mode of Pulse Output must be configured (without setting, Y0 \sim Y7 will be treated as normal output) to any one of following modes, before the HSPSO instruction can be worked.

U/D Mode: Y0 (Y2, Y4, Y6), as up pulse. Y1 (Y3, Y5, Y7), as down pulse.
K/R Mode: Y0 (Y2, Y4, Y6), as the pulse out.. Y1 (Y3, Y5, Y7), as the direction.
A/B Mode: Y0 (Y2, Y4, Y6), as A phase pulse. Y1 (Y3, Y5, Y7), as B phase pulse.
The output polarity for Pulse Output can select to be Normally ON or Normally OFF.

• The working mode of Pulse Output can be configured by WINPROLADDER in "Output Setup" setting page.

FUN141 MPARA	NC POSITIONING PARAMETER VALUE SETTING (Brief description on function)						FUN141 MPARA	
Execution cont	Ladder symt 141.MPARA- Ps : SR :	ERR —	HR	SR : S	Starting	g regis eters to	put (0 \sim 3) selection ter for parameter table; it btally, and occupy 24 regi	
Operation descr	riptions	Ope-	R0 - 23839 	D0 D4095	R5000 R8071 	2 256 0~3		

- It is not necessary to use this instruction. if the system default for parameter values is matching what user demanded, then this instruction is not needed. However, if it needs to change the parameter value dynamically, this instruction is required.
- This instruction incorporates with FUN140 for positioning control purpose.
- Whether the execution control input "EN" = 0 or 1, this instruction will be performed.
- When there are any errors in parameter value, the output indication "ERR" will be ON. (The error code is stored in the error code register.)
- For detailed functional description and usage, please refer to chapter 13 "The NC positioning control of FBs-PLC" for explanation.

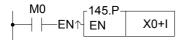
FUN142 P	STOP THE	FUN142 P	
PSOFF	(Brief de	PSOFF	
Execution contro	<u>Ladder symbol</u> I−EN↑- PSOFF Ps	Ps : $0 \sim 3$ Enforce the Pulse Output PSOn (n= Ps) to s	stop.

Command descriptions

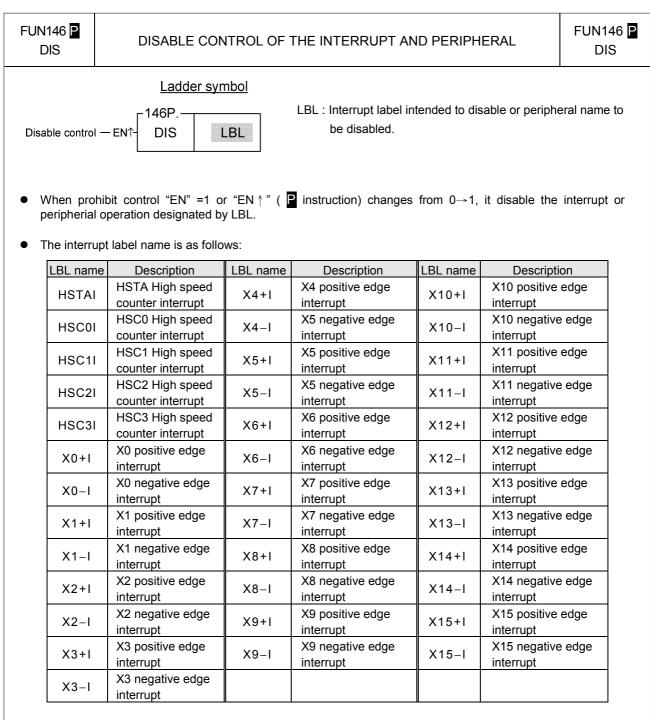
- When execution control "EN" =1 or "EN ↑" (P instruction) changes from 0→1, this instruction will enforce the assigned number set of HSPSO (High Speed Pulse Output) to stop pulse output.
- While in the application for mechanical original point reset, as soon as reach the original point can use this instruction to stop the pulse output immediately, so as to make the original point stop at the same position every time when performing mechanical original point resetting.
- For detailed functional description and usage, please refer to chapter 13 "The NC positioning control of FBs-PLC" for explanation.

FUN143 P PSCNV	CONVERT THE CURRENT PULSE VALUE TO DISPLAY VALUE (mm, Deg, Inch, PS) (Brief description on function)	FUN143 P PSCNV
Execution contr	Ladder symbol rol→ EN↑ 143P.PSCNV Ps :	me unit as the set displayed. on after D = D10, which
	Range HR DR ROR K Ope- rand R0 D0 R5000 2 R3839 D4095 R8071 256 Ps 0 0 ~3 D	
Command descr	iptions	

- When execution control "En" =1 or "EN ↑" (instruction) changes from 0→1, this instruction will convert the assigned current pulse position (PS) to be the mm (or Deg, Inch, or PS) that has same unit as the set value, so as to make current position displaying.
- Only when the FUN140 instruction is executed, then it can get the correct conversion value by executing this instruction.
- For detailed functional description and usage, please refer to chapter 13 "The NC positioning control of FBs-PLC" for explanation.

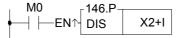

FUN145 P EN	ENABLE CONTROL OF 1	FUN145 P EN	
	Ladder symbol		
Enable control	– en↑- EN LBL	LBL : External input or peripheral label name the enabled.	nat to be

- When enable control "EN" =1 or "EN ↑" (instruction) changes from 0→1, it allows the external input or peripheral interrupt action which is assigned by LBL.
- The enabled interrupt label name is as follows:(Please refer the section 10.3 for details)


LBL name	Description	LBL name	Description	LBL name	Description
HSTAI	HSTA High speed counter interrupt	X4+I	X4 positive edge interrupt	X10+I	X10 positive edge interrupt
HSC0I	HSC0 High speed counter interrupt	X4–I	X5 negative edge interrupt	X10-I	X10 negative edge interrupt
HSC1I	HSC1 High speed counter interrupt	X5+I	X5 positive edge interrupt	X11+I	X11 positive edge interrupt
HSC2I	HSC2 High speed counter interrupt	X5–I	X5 negative edge interrupt	X11–I	X11 negative edge interrupt
HSC3I	HSC3 High speed counter interrupt	X6+I	X6 positive edge interrupt	X12+I	X12 positive edge interrupt
X0+I	X0 positive edge interrupt	X6-I	X6 negative edge interrupt	X12–I	X12 negative edge interrupt
X0-I	X0 negative edge interrupt	X7+I	X7 positive edge interrupt	X13+I	X13 positive edge interrupt
X1+I	X1 positive edge interrupt	X7–I	X7 negative edge interrupt	X13–I	X13 negative edge interrupt
X1–I	X1 negative edge interrupt	X8+I	X8 positive edge interrupt	X14+I	X14 positive edge interrupt
X2+I	X2 positive edge interrupt	X8–I	X8 negative edge interrupt	X14-I	X14 negative edge interrupt
X2–I	X2 negative edge interrupt	X9+I	X9 positive edge interrupt	X15+I	X15 positive edge interrupt
X3+I	X3 positive edge interrupt	X9–I	X9 negative edge interrupt	X15–I	X15 negative edge interrupt
X3–I	X3 negative edge interrupt				

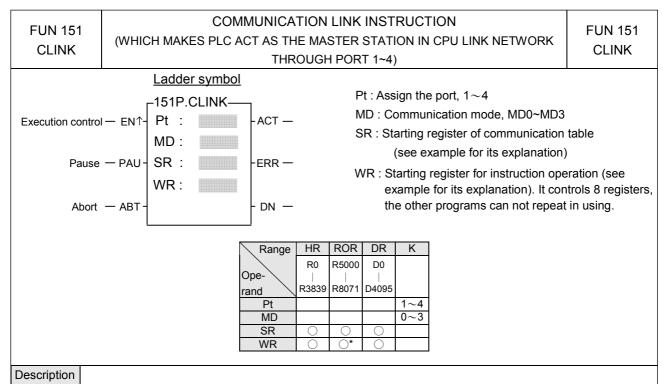
• In practical application, some interrupt signals should not be allowed to work at sometimes, however, it should be allowed to work at some other times. Employing FUN146 (DIS) and FUN145 (EN) instructions could attain the above mentioned demand.

Program example



 When M0 changes from 0→1, it allows X0 to send interrupt when X0 changes from 0→1. CPU can rapidly process the interrupt service program of X0+I.

• In practical application, some interrupt signals should not be allowed to work at certain situation. To achive this, this instruction may be used to disable the interrupt signal.


Program example

• When M0 changes from 0→1, it prohibits X2 from sending interrupt when X2 changes from 0→1.

FUN150 M-BUS	MODBUS MASTER INSTRUCTION (WHICH MAKES PLC AS THE MODBUS MASTER THROUG	GH PORT 1~4) FUN150 M-BUS
	Ladder symbol	
Execution control		communication port being acted naster
ASCII/RTU		of communication program
Abort		or instruction operation. It controls 8 or programs can not repeat in using.
	Range HR ROR DR K Ope- R0 R5000 D0 rand R3839 R8071 D4095 1~4 SR O O I~4 WR O* O* I	

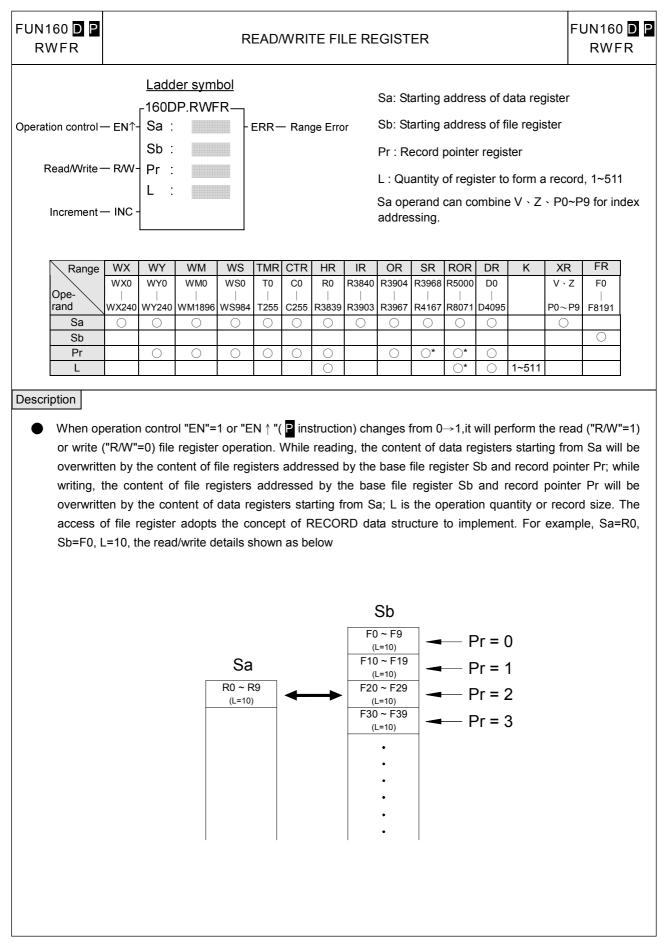
- 1. FUN150 (M-BUS) instruction makes PLC act as Modbus master through Port 1~4, thus it is very easy to communicate with the intelligent peripheral with Modbus protocol.
- 2. The master PLC may connect with 247 slave stations through the RS-485 interface.
- 3. Only the master PLC needs to use M-BUS instruction.
- 4. It employs the program coding method or table filling method to plan for the data flow controls; i.e. from which one of the slave station to get which type of data and save them to the master PLC, or from the master PLC to write which type of data to the assigned slave station. It needs only seven registries to make definition; every seven registers define one packet of data transaction.
- 5. When execution control ^{SEN}↑ " changes from 0→1 and both inputs Pause "PAU" and Abort "ABT" are 0, and if Port 1/2/3/4 hasn't been controlled by other communication instructions [i.e. M1960 (Port1) / M1962 (Port2) / M1936 (Port3) / M1938 (Port4) = 1], this instruction will control the Port 1/2/3/4 immediately and set the M1960/M1962/M1936/M1938 to be 0 (which means it is being occupied), then going on a packet of data transaction immediately. If Port 1/2/3/4 has been controlled (M1960/M1962/M1936/M1938 = 0), then this instruction will enter into the standby status until the controlling communication instruction completes its transaction or pause/abort its operation to release the control right (M1960/M1962/M1936/M1938 =1), and then this instruction will become enactive, set M1960/M1962/M1936/M1938 to be 0, and going on the data transaction immediately.
- 6. While in transaction processing, if operation control "ABT" becomes 1, this instruction will abort this transaction immediately and release the control right (M1960/M1962/M1936/M1938 = 1). Next time, when this instruction takes over the transmission right again, it will restart from the first packet of data transaction.
- 7. While "A/R" =0 , Modbus RTU protocol ; "A/R" =1 , Modbus ASCII protocol .
- 8. While it is in the data transaction, the output indication "ACT" will be ON.
- 9. If there is error occurred when it finishes a packet of data transaction, the output indication "DN" & "ERR" will be ON.
- 10. If there is no error occurred when it finishes a packet of data transaction, the output indication "DN" will be ON.

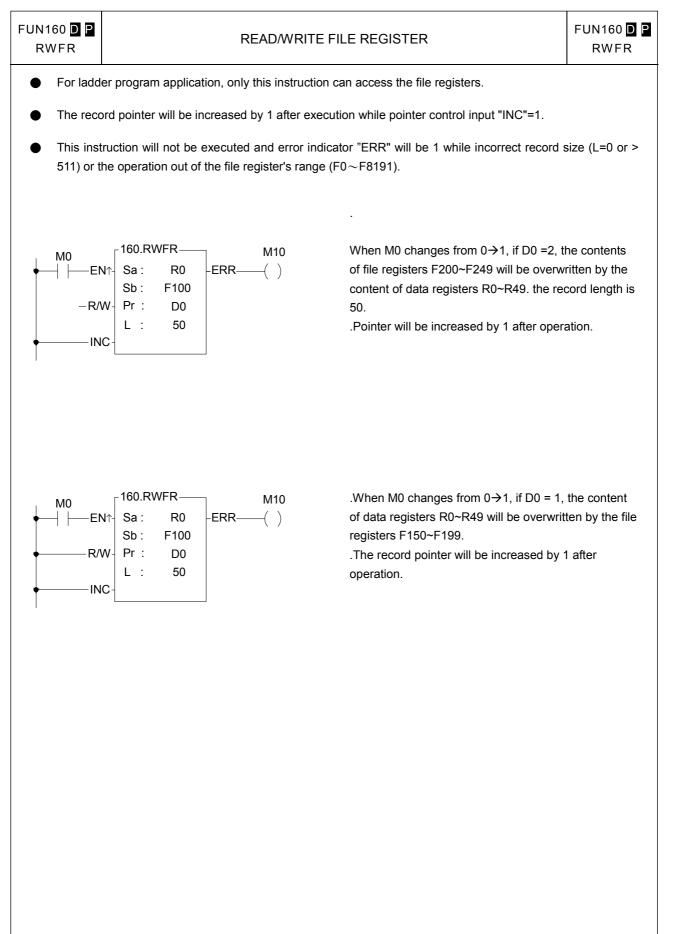
● This instruction provides 4 instruction modes MD0~MD3. Of which, three instruction modes MD0~MD2, are "regular link network", and the MD3 is the "high speed link network". The following are the function description of respective modes. For the details, please refer to section 12.1.2 for explanation.

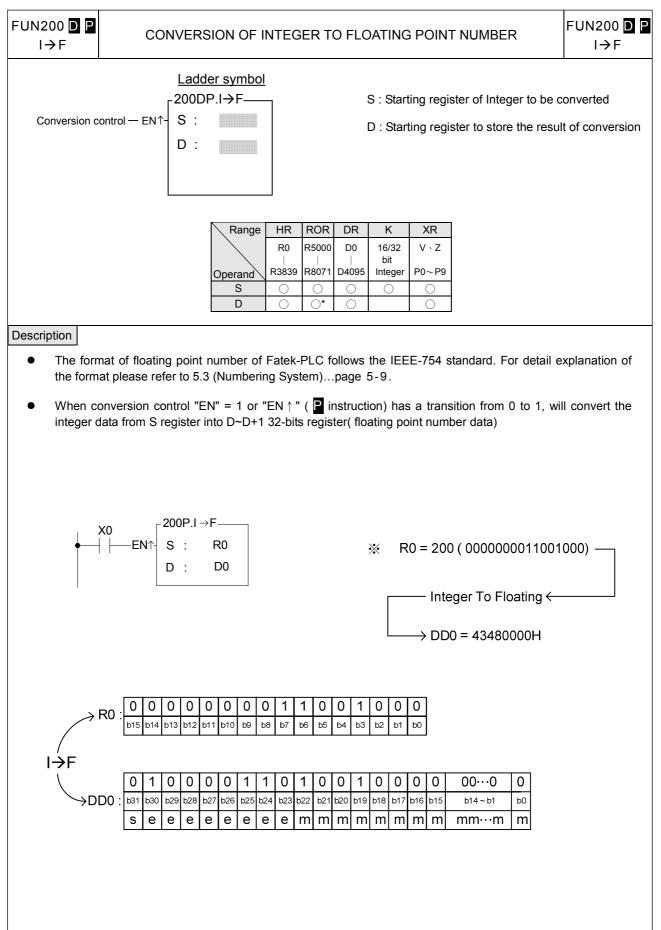
• MD0 : Master station mode for FATEK CPU LINK.

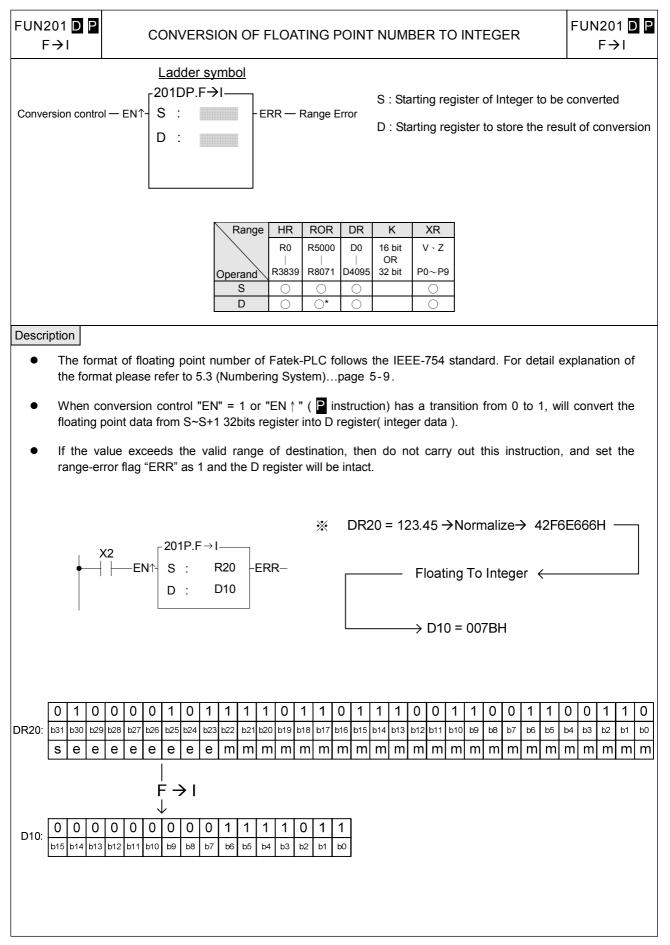
For any PLC, whose ladder program contains the FUN151:MD0 instruction, will become master station of FATEK CPU LINK network. The master station PLC will base on the communication program stored in data registers in which the target station, data type, data length, etc, were specified to read or write slave station via "FATEK FB-PLC Communication Protocol" command. With this approach up to 254 PLC stations can share the data each other

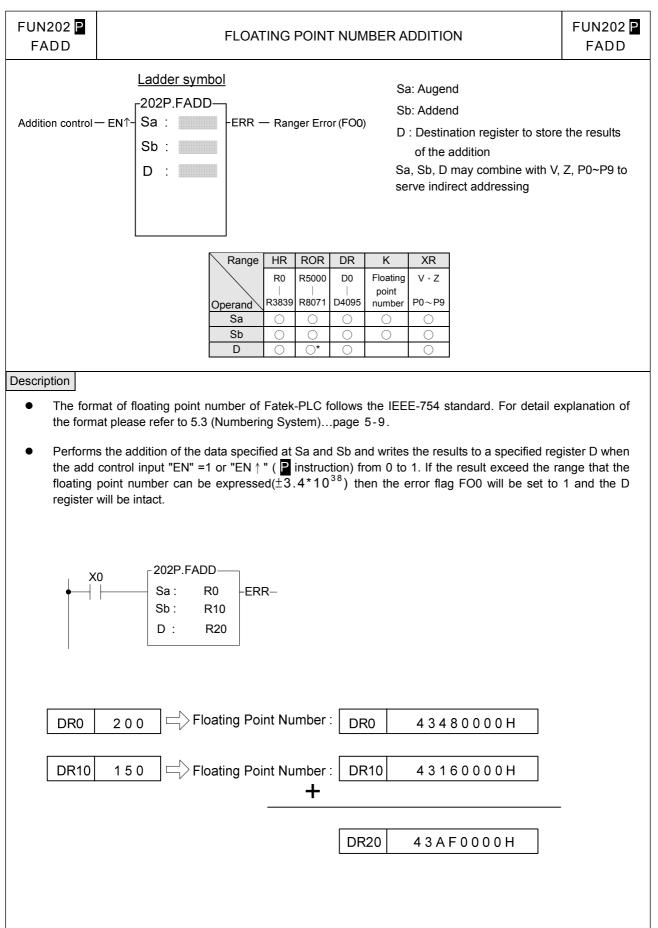
• MD1 : Active ASCII data transmission mode.

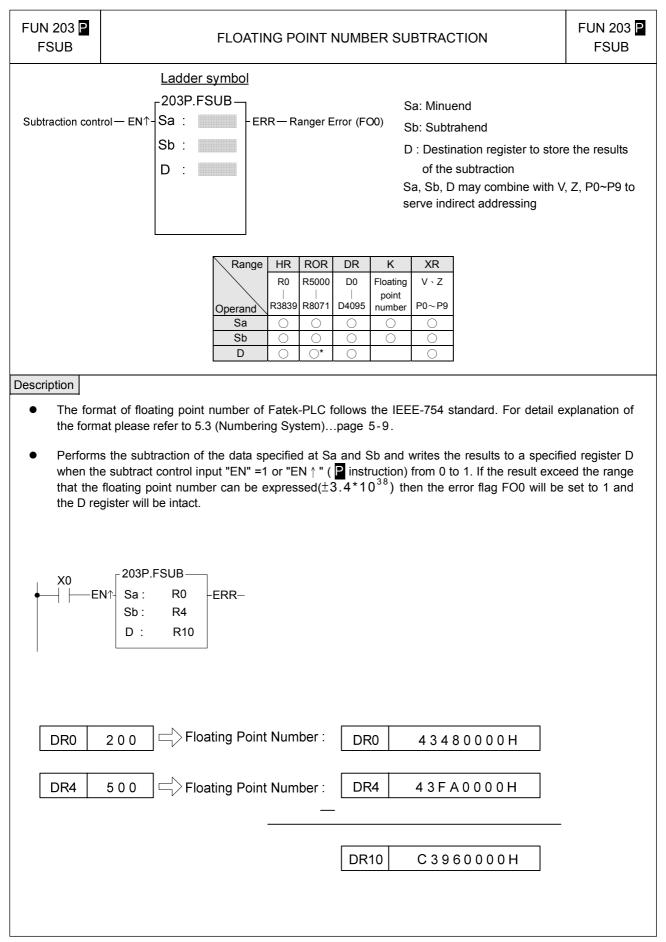

With this mode, the FUN151 instruction will parse the communication program stored in data registers and base on the parsing result send the data from port2 to ASCII peripherals (such as computer, other brand PLC, inverter, moving sign, etc, this kind of device can command by ASCII message). The operation can set to be (1) transmit only, which ignores the response from peripherals, (2) transmit and then to receive the response from peripherals. When operate with mode (2) then the user must base on the communication protocol of peripheral to parsing and prepare the response message by writing the ladder instructions.

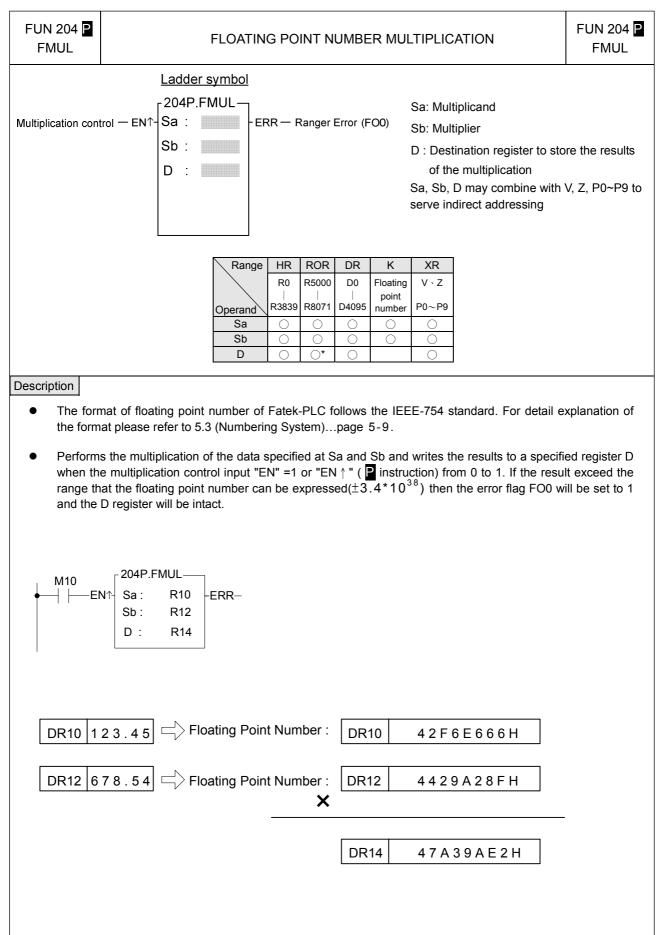

• MD2 : Passive ASCII data receiving mode.

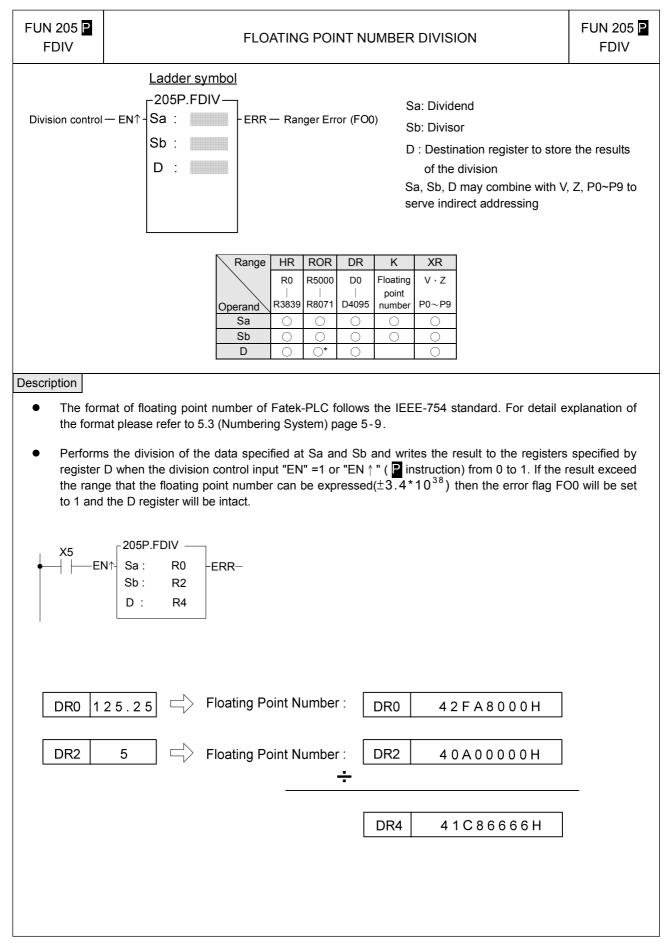

With this mode, the FUN151 will first wait to receive ASCII messages sent by external ASCII peripherals (such as computer, other brand PLC, card reader, bar code reader, electronic weight, etc. this kind of device can send ASCII message). Upon receiving the message, the user can base on the communication protocol of peripheral to parsing and react accordingly. The operation can set to (1) receive only without responding, or (2) receive then responding. For operation mode (2) the user can use the table driver method to write a communication program and after received a message this instruction can base on this communication program automatically reply the message to peripheral.

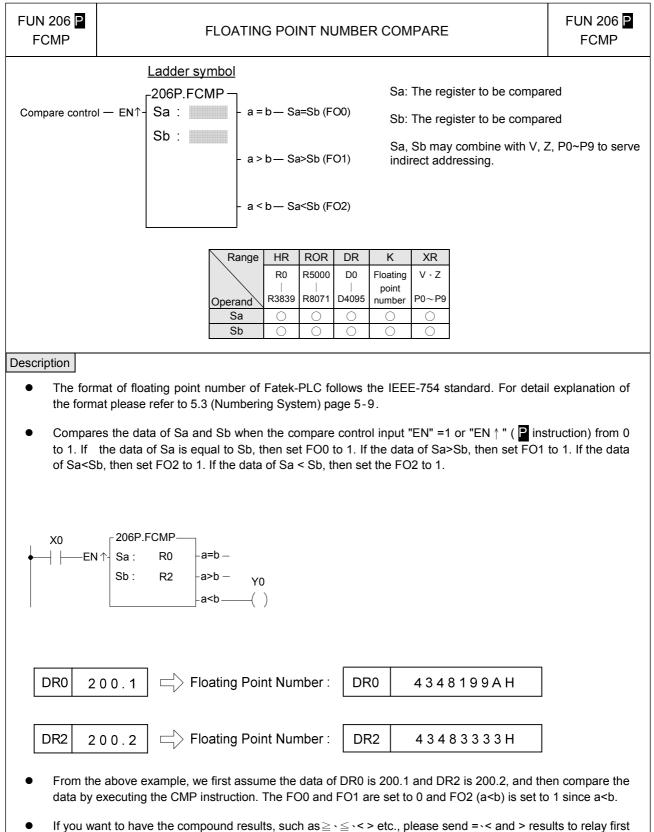

• MD3 : Master station mode of FATEK high speed CPU LINK.

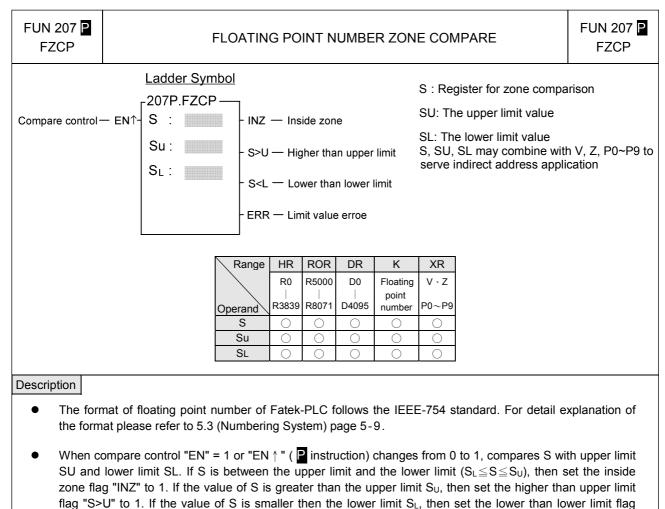

The most distinguished difference between this mode and MD0 is that the communication response of MD3 is much faster than MD0. With The introduction of MD3 mode CPU LINK, The FATEK PLC can easily to implement the application of distributed control and real time data monitoring.

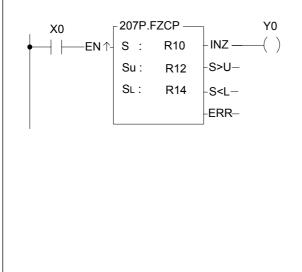




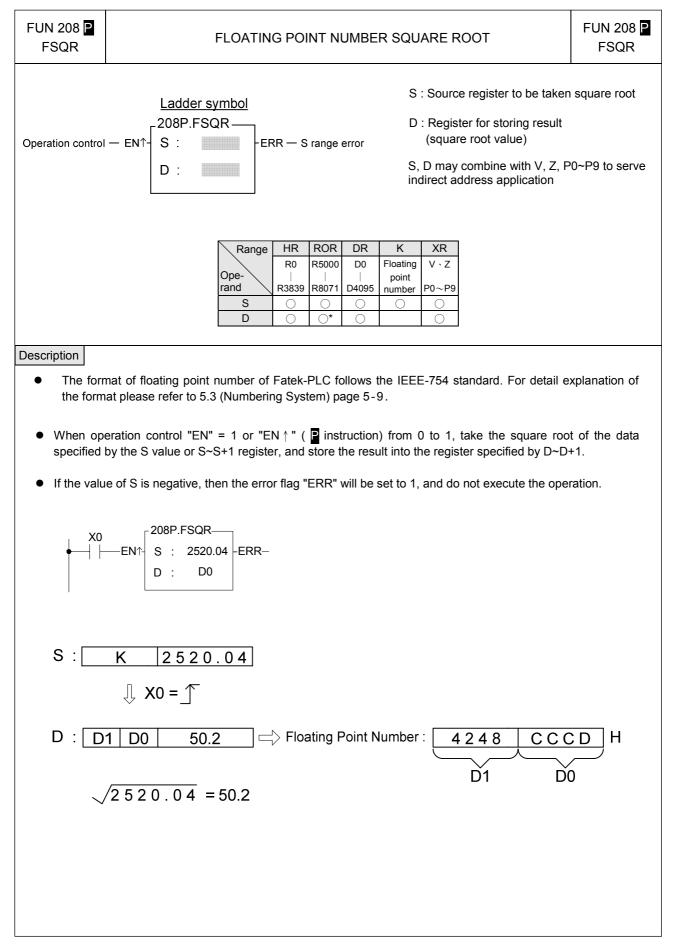


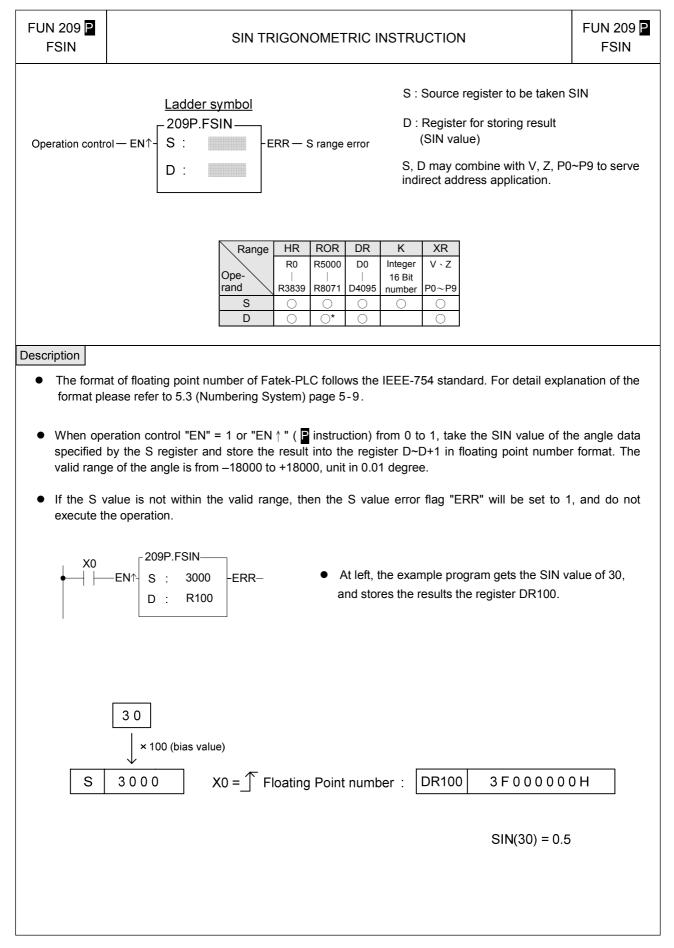


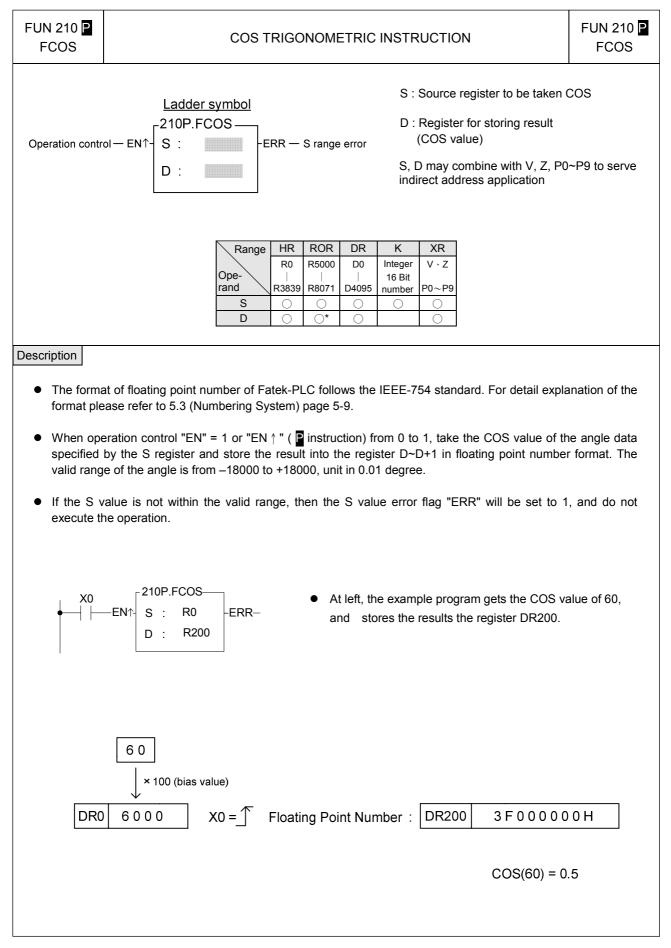


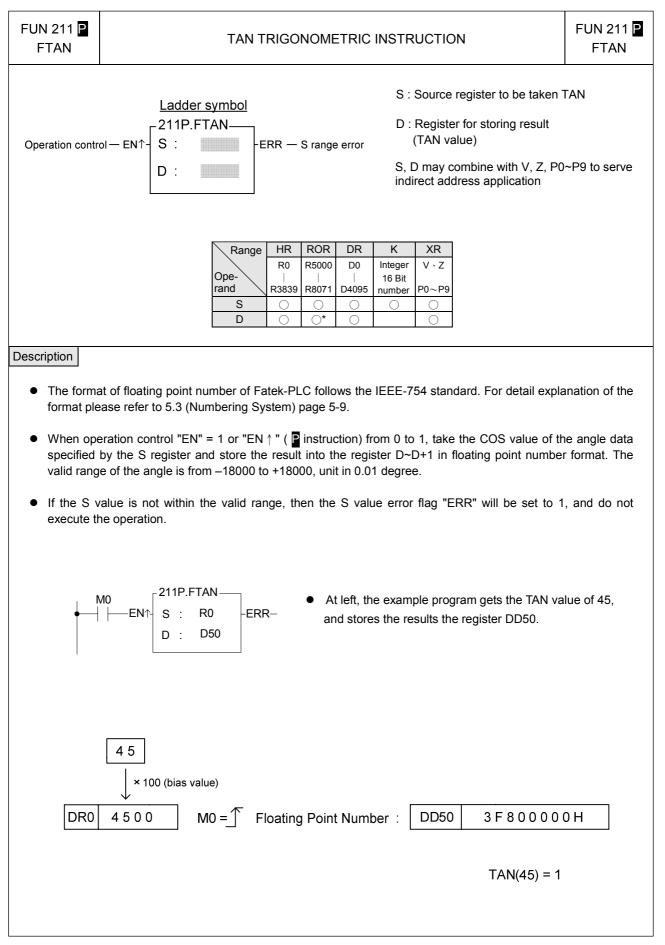


If you want to have the compound results, such as ≥ ≤ < > etc., please send = < and > results to relay first and then combine the result from the relays.

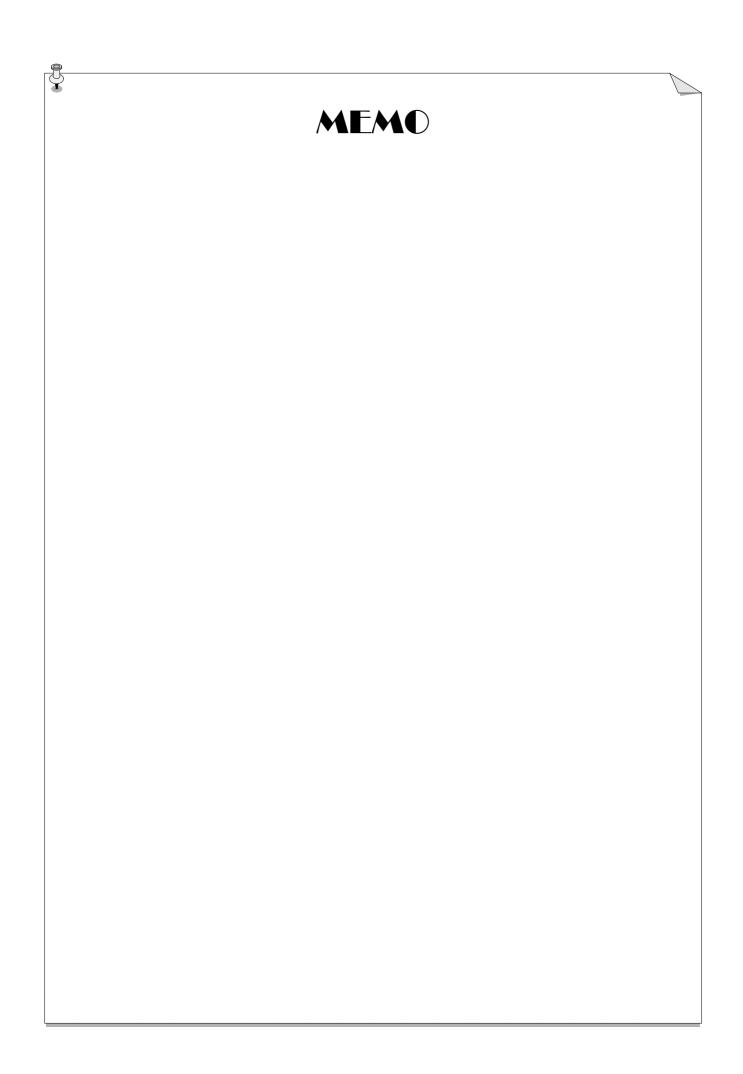

• The upper limit S_U should be greater than the lower limit S_L . If $S_U < S_L$, then the limit value error flag "ERR" will set to 1, and this instruction will not carry out.



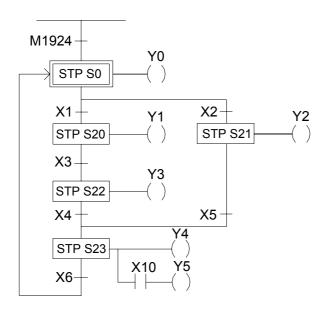

"S<L" as 1.


- The instruction at left compares the value of DR10 with the upper and lower limit zones formed by DR12 and DR14. If the values of DR10~DR14 are as shown in the diagram at bottom left, then the result can then be obtained as at the right of this diagram.
- If want to get the status of out side the zone, then OUT NOT Y0 may be used, or an OR operation between the two outputs S>U and S<L may be carried out, and move the result to Y0.

FUN 207 P FZCP	FLOATING POINT NUMBER ZONE COMPARE					
	2000.2 → Floating Point Number: DR10 44FA0666H 3000.3 → Floating Point Number: DR12 453B84CDH (U	Jpper limit value)				
	1000.1 Floating Point Number : DR14 447A0666H (L	₋ower limit value)				
	X0= \int → FLOATING ZONE COMPARE → Y0 = $\boxed{1}$ \downarrow \downarrow Results of execution					



FUN 213 P FABS	FLOATING POINT NUMBER ABSOLUTE VALU	E FUN 213 P FABS
Operation cor	address application	en absolute value 7, Z, P0~P9 to serve indirect
	Range HR ROR DR K XR R0 R5000 D0 Integer V \ Z Ope- 16 Bit R3839 R8071 D4095 number P0~P9 D () ()* () () ()	
	at of floating point number of Fatek-PLC follows the IEEE-754 standard. F ease refer to 5.3 (Numbering System) page 5-9.	For detail explanation of the
	eration control "EN" = 1 or "EN ↑" (
ł		left calculates the absolute egister, and stores it back in
F	し、(ABSOLUTE) し、し、人 XO	3 8 0 0 0 H = 3 8 0 0 0 H


Chapter 8 Step Instruction Description

Structured programming design is a major trend in software design. The benefits are high readability, easy maintenance, convenient updating and high quality and reliability. For the control applications, consisted of many sequential tasks, designed by conventional ladder program design methodology usually makes others hard to maintain. Therefore, it is necessary to combine the current widely used ladder diagrams with the sequential controls made especially for machine working flow. With help from step instructions, the design work will become more efficient, time saving and controlled. This kind of design method that combines process control and ladder diagram together is called the step ladder language.

The basic unit of step ladder diagram is a step. A step is equivalent to a movement (stop) in the machine operation where each movement has an output. The complete machine or the overall sequential control process is the combination of steps in serial or parallel. Its step-by-step sequential execution procedure allows others to be able to understand the machine operations thoroughly, so that design, operation, and maintenance will become more effective and simpler.

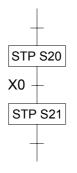
8.1 The Operation Principle of Step Ladder Diagram

[Description]

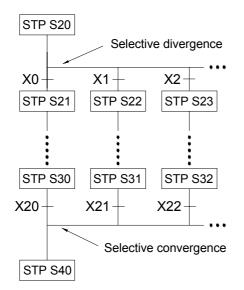
- 1. STP Sxxx is the symbol representing a step Sxxx that can be one of S0 \sim S999. When executing the step (status ON), the ladder diagram on the right will be executed and the previous step and output will become OFF.
- M1924 is on for a scan time after program start. Hence, as soon as ON, the stop of the initial step S0 is entered (S0 ON) while the other steps are kept inactive, i.e. Y1~Y5 are all OFF. This means M1924 ON→S0 ON→Y0 ON and Y0 will remain ON until one of the contacts X1 or X2 is ON.
- 3. Assume that X2 is ON first; the path to S21 will then be executed.

X2 ON $\Rightarrow \left\{ \begin{array}{c} \\ \end{array} \right\}$	S21 ON	[Y2 ON
	S0 OFF	⇒1	Y2 ON Y0 OFF
Y2 will remain ON until X5 is ON.			

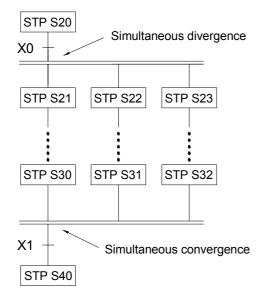
4. Assume that X5 is ON, the process will move forward to step S23.


i.e. X5 ON $\Rightarrow \begin{cases} S23 \text{ ON} \\ S21 \text{ OFF} \end{cases} \Rightarrow \begin{cases} Y4 \text{ ON} \\ Y2 \text{ OFF} \end{cases}$ Y4 and Y5 will remain ON until X6 is ON. % If X10 is ON, then Y5 will be ON.

5. Assume that X6 is ON, the process will move forward to S0.

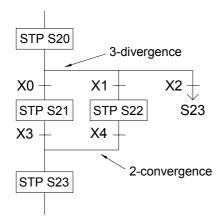

i.e. X6 ON $\Rightarrow \begin{cases} S0 & ON \\ S23 & OFF \end{cases} \Rightarrow \begin{cases} Y0 & ON \\ Y4 & Y5 & OFF \end{cases}$ Then, a control process cycle is completed and the next control process cycle is entered.

8.2 Basic Formation of Step Ladder Diagram


① Single path

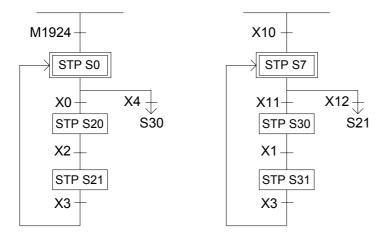
② Selective divergence/convergence

③ Simultaneous divergence/convergence

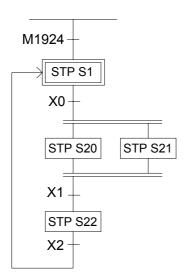

- Step S20 alone moves to step S21 through X0.
- X0 can be changed to other serial or parallel combination of contacts.

- Step S20 selects an only one path which divergent condition first met. E.g. X2 is ON first, then only the path of step S23 will be executed.
- A divergence may have up to 8 paths maximum.
- X1, X2,, X22 can all be replaced by the serial or parallel combination of other contacts.

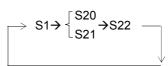
- After X0 is ON, step S20 will simultaneously execute all paths below it, i.e. all S21, S22, S23, and so on, are in action.
- All divergent paths at a convergent point will be executed to the last step (e.g. S30, S31 and S32). When X1 is ON, they can then transfer to S40 for execution.
- The number of divergent paths must be the same as the number of convergent paths. The maximum number of divergence/convergence path is 8.


④ Jump

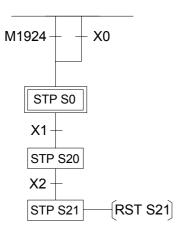
a. The same step loop


- There are 3 paths below step S20 as shown on the left. Assume that X2 is ON, then the process can jump directly to step S23 to execute without going through the process of selective convergence.
- The execution of simultaneous divergent paths can not be skipped.

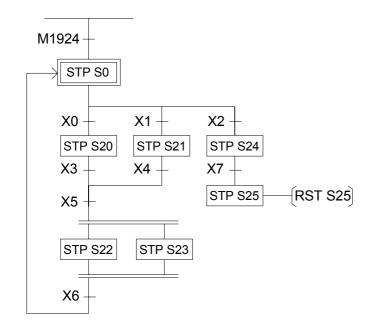
b. Different step loop



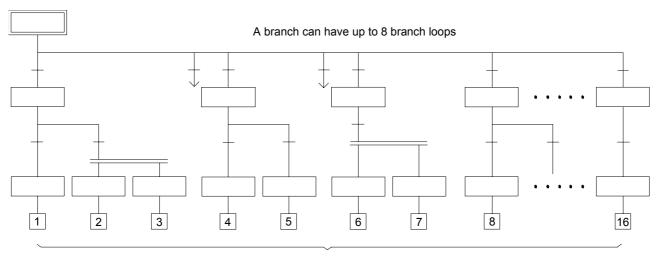
⑤Closed Loop and Single Cycle


a. Closed Loop

• The initial step S1 is ON, endless cycle will be continued afterwards.



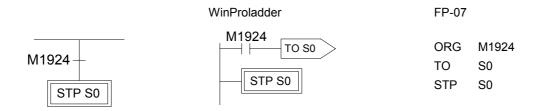
b. Single Cycle



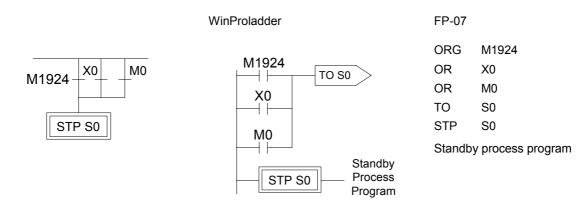
 When step S20 is ON, if X2 is also ON, then "RST S21" instruction will let S21 OFF which will stop the whole step process.

c. Mixed Process

6 Combined Application


The maximum number of downward horizontal branch loops of an initial step is 16

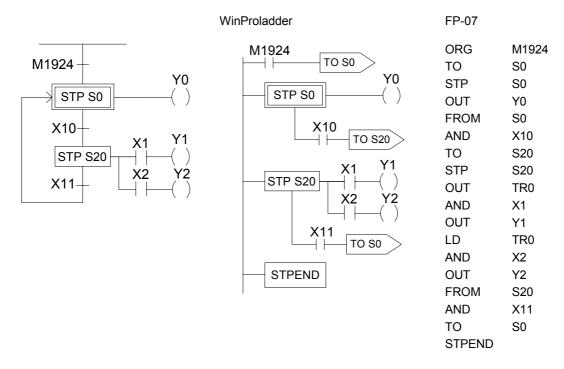
8.3 Introduction of Step Instructions: STP, FROM, TO and STPEND


• STP Sx : $S0 \le Sx \le S7$ (Displayed in WinProladder) or STP Sx : $S0 \le Sx \le S7$ (Displayed in FP-07)

This instruction is the initial step instruction from where the step control of each machine process can be derived. Up to 8 initial steps can be used in the FBs series, i.e. a PLC can make up to 8 process controls simultaneously. Each step process can operate independently or generate results for the reference of other processes.

[Example 1] Go to the initial step S0 after each start (ON)

[Example 2] Each time the device is start to run or the manual button is pressed or the device is malfunction, then the device automatically enters the initial step S0 to standby.



[Description] X0: Manual Button, M0: Abnormal Contact.

STP Sxxx : S20≦Sxxx≦S999 (Displayed in WinProladder) or STP Sxxx : S20≦Sxxx≦S999 (Displayed in FP-07)

This instruction is a step instruction, each step in a process represents a step of sequence. If the status of step is ON then the step is active and will execute the ladder program associate to the step.

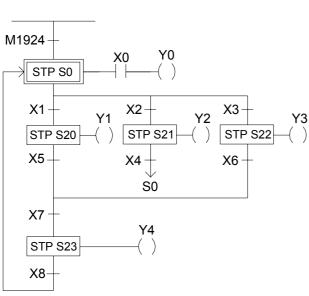
[Example]

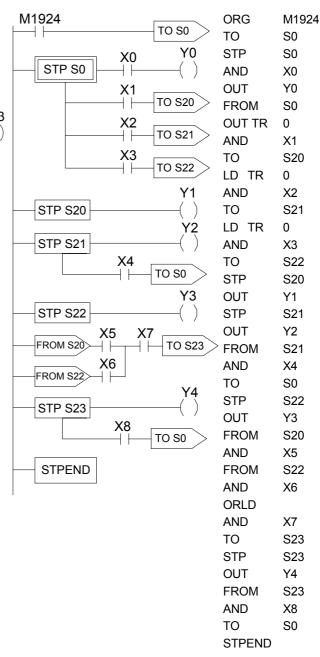
[Description] 1. When ON, the initial step S0 is ON and Y0 is ON.

2. When transfer condition X10 is ON (in actual application, the transferring condition may be formed by the serial or parallel combination of the contacts X, Y, M, T and C), the step S20 is activated. The system will automatically turn S0 OFF in the current scan cycle and Y0 will be reset automatically to OFF.

	ſ		X1 ON	→Y1 ON
io ¥10 ∩N⊸	S20 ON S0 OFF	\Rightarrow	X2 ON	→Y2 ON
			Y0 OFF	

3. When the transfer condition X11 is ON, the step S0 is ON, Y0 is ON and S20, Y1 and Y2 will turn OFF at the same time.


	S0			Y0 ON
i.e. X11 ON \Rightarrow	S20		\Rightarrow	Y1 OFF
	520	OFF		Y2 OFF


 FROM Sxxx ≥: S0≤Sxxx≤S999 (Displayed in WinProladder) or FROM Sxxx : S0≤Sxxx≤S999 (Displayed in FP-07)

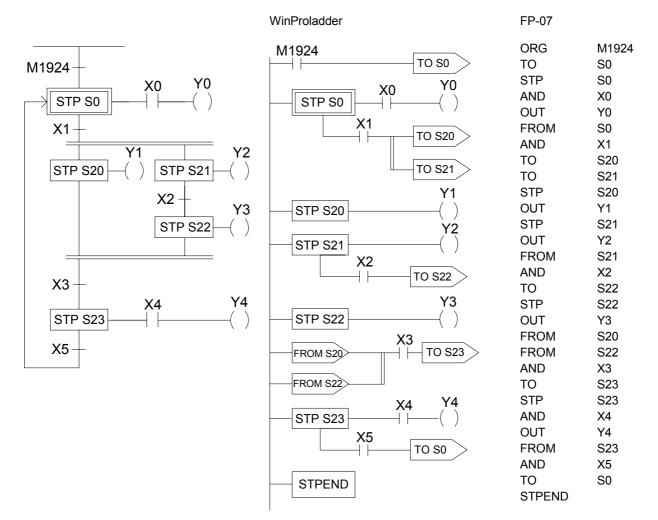
The instruction describes the source step of the transfer, i.e. moving from step Sxxx to the next step in coordination with transfer condition.

WinProladder

[Example]

FP-07

[Description] : 1. When ON, the initial step S0 is ON. If X0 is ON, then Y0 will be ON.


- 2. When S0 is ON: a. if X1 is ON, then step S20 will be ON and Y1 will be ON.
 - b. if X2 is ON, then step S21 will be ON and Y2 will be ON.
 - c. if X3 is ON, then step S22 will be ON and Y3 will be ON.
 - d. if X1, X2 and X3 are all ON simultaneous, then step S20 will have the priority to be ON first and either S21 or S22 will not be ON.
 - e. if X2 and X3 are ON at the same time, then step S21 will have the priority to be ON first and S22 will not be ON.
- 3. When S20 is ON, if X5 and X7 are ON at the same time, then step S23 will be ON, Y4 will be ON and S20 and Y1 will be OFF.
- 4. When S21 is ON, if X4 is ON, then step S0 will be ON and S21 and Y2 will be OFF.
- 5. When S22 is ON, if X6 and X7 are ON at the same time, then step S23 will be ON, Y4 will be ON and S22 and Y3 will be OFF.
- 6. When S23 is ON, if X8 is ON, then step S0 will be ON and S23 and Y4 will be OFF.

• TO Sxxx : S0 \leq Sxxx \leq S999 (Displayed in WinProladder) or

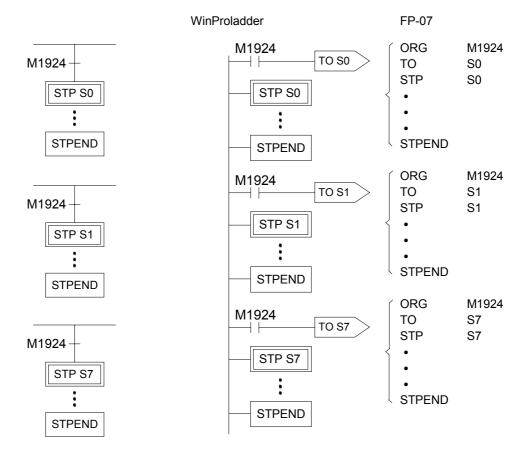
TO Sxxx $: S0 \leq Sxxx \leq S999$ (Displayed in FP-07)

This instruction describes the step to be transferred to.

[Example]

[Description] : 1. When ON, the initial step S0 is ON. If X0 is ON, then Y0 will be ON.

- 2. When S0 is ON: if X1 is ON, then steps S20 and S21 will be ON simultaneously and Y1 and Y2 will also be ON.
- 3. When S21 is ON: if X2 is ON, then step S22 will be ON, Y3 will be ON and S21 and Y2 will be OFF.
- 4. When S20 and S22 are ON at the same time and the transferring condition X3 is ON, then step S23 will be ON (if X4 is ON, then Y4 will be ON) and S20 and S22 will automatically turn OFF and Y1 and Y3 will also turn OFF.
- 5. When S23 is ON: if X5 is ON, then the process will transfer back to the initial step, i.e. So will be ON and S23 and Y4 will be OFF.

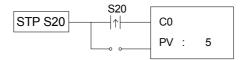

STPEND : (Displayed in WinProladder) or

```
STPEND : (Displayed in FP-07)
```

This instruction represents the end of a process. It is necessary to include this instruction so all processes can be operated correctly.

A PLC can have up to 8 step processes (S0 \sim S7) and is able to control them simultaneously. Therefore, up to 8 STPEND instructions can be obtained.

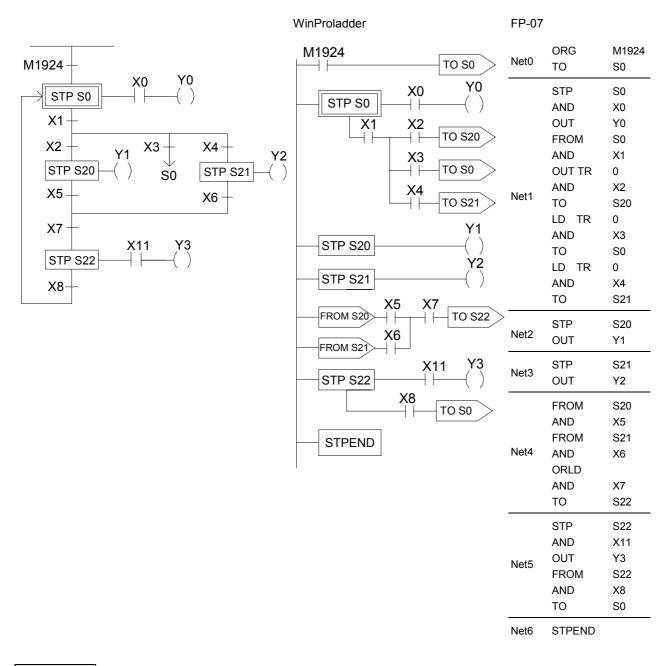
[Example]



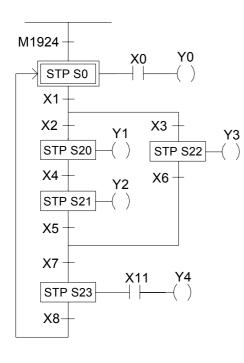
[Description] When ON, the 8 step processes will be active simultaneously.

8.4 Notes for Writing a Step Ladder Diagram

[Notes]


- In actual applications, the ladder diagram can be used together with the step ladder.
- There are 8 steps, S0~S7, that can be used as the starting point and are called the "initial steps".
- When PLC starts operating, it is necessary to activate the initial step. The M1924 (the first scan ON signal) provided by the system may be used to activate the initial step.
- Except the initial step, the start of any other steps must be driven by other step.
- It is necessary to have an initial step and the final STPEND instruction in a step ladder diagram to complete a step process program.
- There are 980 steps, S20~S999, available that can be used freely. However, used numbers cannot be repeated. S500~S999 are retentive(The range can be modified by users), can be used if it is required to continue the machine process after power is off.
- Basically a step must consists of three parts which are control output, transition conditions and transition targets.
- MC and SKP instructions cannot be used in a step program and the sub-programs. It's recommended that JMP instruction should be avoided as much as possible.
- If the output point is required to stay ON after the step is divergent to other step, it is necessary to use the SET instruction to control the output point and use RST instruction to clear the output point to OFF.
- Looking down from an initial step, the maximum number of horizontal paths is 16. However, a step is only allowed to have up to 8 branch paths.
- When M1918=0 (default), if a PULSE type function instruction is used in master control loop (FUN 0) or a step program, it is necessary to connect a TU instruction before the function instruction. For example,

When M1918=1, the TU instruction is not required, e.g.:


Example 1

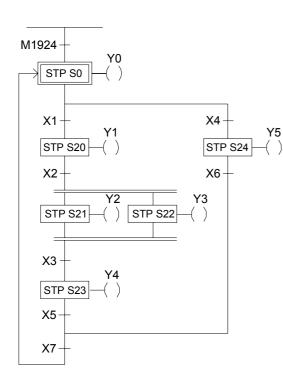
Description

- 1. Input the condition to initial step S0
- 2. Input the S0 and the divergent conditions of S20, S0 and S21
- 3. Input the S20
- 4. Input the S21
- 5. Input the convergence of S20 and S21
- 6. Input the S22

Example 2

WinProladder	FP-07		
M1924 TO S0	Net0	ORG TO	M1924 S0
X0 Y0 $X1 X2$ $X3$ $Y1$ $TO S20$ $Y1$ $TO S20$ $Y1$ $X4$ $TO S21$ $Y2$	Net1	Ó STP AND OUT FROM AND OUT TR AND TO LD TR AND TO	S0 X0 Y0 S0 X1 0 X2 S20 0 X3 S22
STP S21 () Y3 () X5 X7 FROM S21 FROM S21 TO S23	Net2	STP OUT FROM AND TO	S20 Y1 S20 X4 S21
FROM S21 TO S23 > X6 FROM S22	Net3	STP OUT	S21 Y2
X11 Y4 STP S23 () X8	Net4	STP OUT	S22 Y3
	Net5	FROM AND FROM AND ORLD AND TO	S21 X5 S22 X6 X7 S23
	Net6	STP AND OUT FROM AND TO	S23 X11 Y4 S23 X8 S0

Net7 STPEND

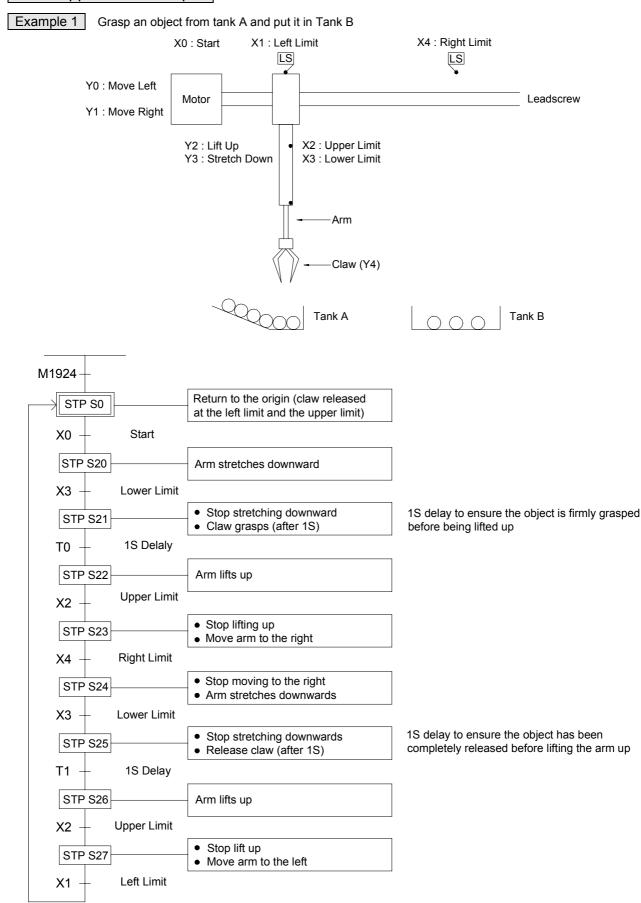

Description

1. Input the condition to initial step S0

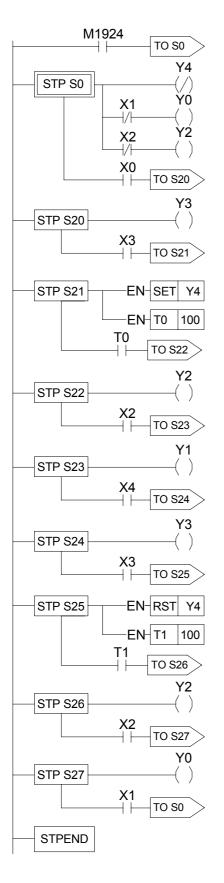
2. Input the S0 and the divergent condition of S20 and S22 $\,$

- 3. Input the S20
- 4. Input the S21
- 5. Input the S22
- 6. Input the convergence of S21 and S22
- 7. Input the S23

Example 3

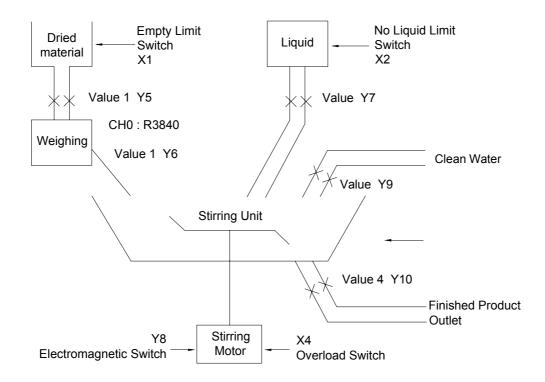


WinF	Proladder	-		FP-0	7		
		M1924	TO S0	Net0	<pre>{</pre>	ORG TO	M1924 S0
5) [STP S0	^{⊒]} X1 	Y0 () 	Net1		STP OUT FROM OUT TR AND TO LD TR AND TO	S0 Y0 S0 0 X1 S20 0 X4 S24
	STP S21 STP S22	_		Net2		STP OUT FROM AND TO TO	S20 Y1 S20 X2 S21 S22
	FROM S21		X3 TO S23	Net3		STP OUT	S21 Y2
	FROM S22		Y4	Net4		STP OUT	S22 Y3
	STP S23 STP S24 FROM S23	 X5	() Y5 () X7 ↓ ⊢ TO S0 >	Net5	<pre>{</pre>	FROM FROM AND TO	S21 S22 X3 S23
	FROM S24	X6 ≻— —		Net6		STP OUT	S23 Y4
[STPEN	D		Net7		STP OUT	S24 Y5
				Net8		FROM AND FROM AND ORLD AND TO	S23 X5 S24 X6 X7 S0
				Net9		STPEND	


Description

- 1. Input the condition to initial step S0
- 2. Input the S0 and the divergences of S20 and S24 $% \left(1-\frac{1}{2}\right) =0$
- 3. Input the S20
- 4. Input the S20 and the divergences of S21 and S22
- 5. Input the S21
- 6. Input the S22
- 7. Input the convergences of S21 and S22
- 8. Input the S23
- 9. Input the S24
- 10. Input the convergences of S23 and S24

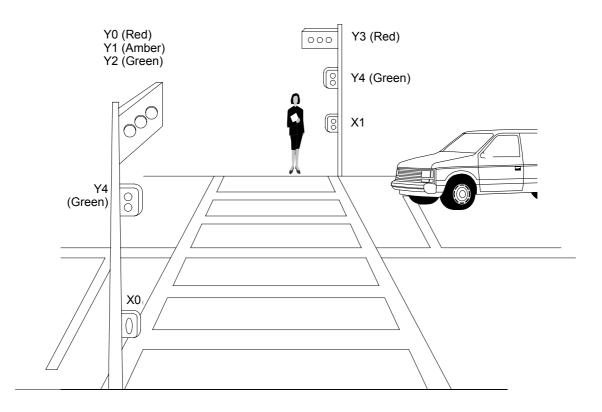
8.5 Application Examples


WinProladder

	ORG TO STP OUT TR	M1924 S0 S0 0
Release claw	OUT NOT	Y4
Return to the left limit		X1 Y0
Return to the upper limit	LD TR AND NOT	0 X2
Turn the switch ON before moving to S20	OUT FROM AND	Y2 S0 X0
Stretch arm downward	TO	S20
Move to S21 after stretching to the lower limit	STP OUT FROM	S20 Y3 S20
Claw grasps (since the SET instruction is used, Y4 should remain ON after departing from STP S21)	AND TO STP SET	X3 S21 S21 Y4
Divergent into S22 after 1S	T0 PV: FROM AND	100 S21 T0
Lift the arm up	TO	S22 S22
Divergent into S23 after reaching the upper limit	STP OUT FROM	Y2 S22
Move arm to the right	AND TO	X2 S23
Divergent into S24 after moving to the right limit	STP OUT FROM	S23 Y1 S23
Stretch the arm downward	AND	X4
Divergent into S25 after stretching to the	TO STP	S24 S24
lower limit	OUT	Y3
Release claw	FROM AND	S24 X3
Delay for 1S	TO STP	S25 S25
Transfer into S26 after 1S	RST T1 PV: FROM	Y4 100 S25
Lift the arm up	AND TO	T1 S26
Divergent into S27 after reaching the upper limit	STP OUT	S26 Y2
Move the arm to the left	FROM AND	S26 X2
Divergent into S0 after moving to the left limit (a complete cycle)	TO STP OUT FROM AND TO	S27 S27 Y0 S27 X1 S0
	STPEND	00

FP-07

Example 2 Liquid Stirring Process



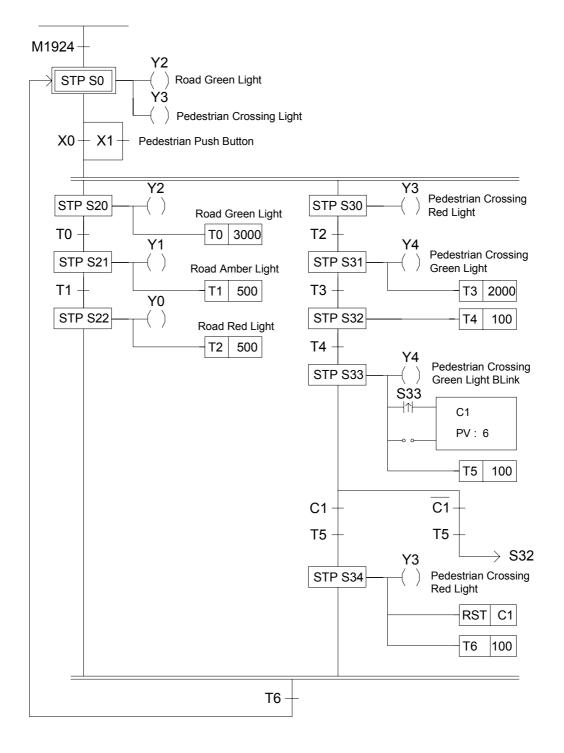
- Input Points: Empty limit switch X1
 - No liquid limit switch X2 Empty limit switch X3 Over-load switch X4 Warning clear button X5 Start button X6 Water washing button X7
- Warning Indicators: Empty dried material Y1 Insufficient liquid Y2 Empty stirring unit Y3 Motor over-load Y4
- Output Points: Dried material inlet valve Y5

 Dried material inlet valve Y6
 Liquid inlet valve Y7
 Motor start electromagnetic valve Y8
 Clean water inlet valve Y9
 Finished product outlet valve Y10
- Weighing Output: CH0 (R3840)
- M1918=0

WinProladder		FP-07			
M1924		ORG	M1924	STP	S22
		то	S0	OUT	Y7
STP S0 X1 SET Y1		STP	S0	T1 PV: 800)
X2 SET Y2		OUT TR	0	FROM	S21
X3		AND NOT	X1	FROM	S22
X4	Warning indicators	SET	Y1	AND	то
SET Y4		LD TR	0	AND	T1
		AND NOT	X2	то	S23
		SET	Y2	STP	S23
		LD TR	0	OUT TR	0
RST Y3	Reset warning	AND	X3	OUT	Y8
RST Y4	C	SET	Y3	LD TR	0
X6 Y1 Y2 Y3 Y4		LD TR	0	T2 PV:	4500
X7 Y3 Y4	Draduction start	AND	X4	LD TR	0
H H/H/H TO S24	Production start	SET	Y4	AND	0 X4
Y5	Water washing start	LD TR	0	OUT	Y4
STP S20		AND	0 X5	STP	S24
17CMPM0		RST	X5 Y1	OUT TR	0 0
Sa : R3840 M1	Input weighing	RST	Y2		0 500
Sb:R0		RST	Y3		500 0
		RST	Y4	LD TR AND NOT	0 T3
M1	Status after weighing				
	Divergent into S21 and S22	FROM	S0	OUT	Y9
Y6 ────────────────────────────────────	C C	OUT TR	1	LD TR	0
	Input material to stirring	AND	X6	T4 PV:	1500
EN-T0 500	unit	AND NOT	Y1	LD TR	0
Y7		AND NOT	Y2	AND NOT	T4
STP S22		AND NOT	Y3	OUT	Y10
EN-T1 800		AND NOT	Y4	FROM	S23
	Add liquid to stirring unit	ТО	S20	AND	T2
		LD TR	1	FROM	S24
	Complete dried material	AND	X7	AND	T4
FROM S22	and liquid input, transfer	AND NOT	Y3	ORLD	~~-
STP S23	the status to S23	AND NOT	Y4	TO	S25
EN-T2 4500	0.1	TO	S24	STP	S25
	Stirring timer	STP	S20	OUT TR	0
X4 Y4		OUT	Y5	AND	X3
		FUN	17	OUT	Y10
STP S24 EN T3 500	Wash stirring unit	Sa:R3840		LD TR	0
T3 Y9		Sb:R0		AND TU	S25
	Input clean water	FO	0	FUN	15DP
EN-T4 1500		OUT	MO	D:R10	
T4 Y10	Drain water out	FO	1	FROM	S25
		OUT	M1	AND NOT	X3
FROM S23		FROM	S20	ТО	S0
		LD	MO	STPEND	
X3 Y10	Output finished product	OR	M1		
STP S25	Output finished product	ANDLD			
S25 15DP 1↑ +1 R10	and accumulate the cycle	ТО	S21		
		ТО	S22		
		STP	S21		
STPEND		OUT	Y6		
		T0 PV:	500		

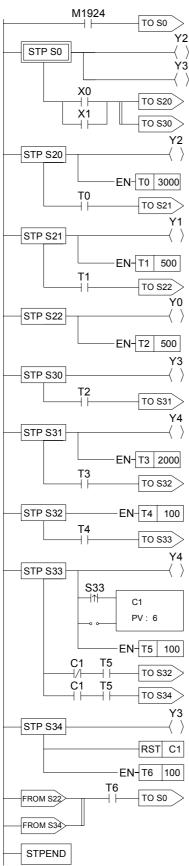
Example 3 Pedestrian Crossing Lights

Input Points: Pedestrian Push Button X0 Pedestrian Push Button X1


٠

Output Points: Road Red Light Y0 Road Amber light Y1 Road Green Light Y2 Pedestrian Crossing Red Light Y3 Pedestrian Crossing Green Light Y4

• M1918=0


٠

Pedestrian Crossing Lights Control Process Diagram

• Pedestrian Crossing Lights Control Program

WinProladder

FP-07			
ORG	M1924	STP	S32
то	S0	T4 PV:	100
STP	S0	FROM	S32
OUT	Y2	AND	T4
OUT	Y3	то	S33
FROM	S0	STP	S33
LD	X0	OUT TR	0
OR	X1	OUT	Y4
ANDLD		LD TR	0
то	S20	AND TU	S33
ТО	S30	LD	OPEN
STP	S20	C1 PV:	6
OUT	Y2	LD TR	0
T0 PV:	3000	T5 PV:	100
FROM	S20	FROM	S33
AND	ТО	OUT TR	1
ТО	S21	AND NOT	C1
STP	S21	AND	T5
OUT	Y1	то	S32
T1 PV:	500	LD TR	1
FROM	S21	AND	C1
AND	T1	AND	T5
ТО	S22	ТО	S34
STP	S22	STP	S34
OUT	Y0	OUT	Y3
T2 PV:	500	RST	C1
STP	S30	T6 PV:	100
OUT	Y3	FROM	S22
FROM	S30	FROM	S34
AND	T2	AND	Т6
ТО	S31	то	S0
STP	S31	STPEND	
OUT	Y4		
T3 PV:	2000		
FROM	S31		

AND

то

Т3

S32

8.6 Syntax Check Error Codes for Step Instruction

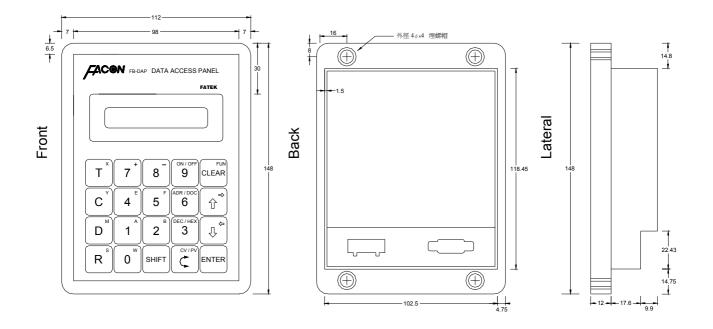
The error codes for the usage of step instruction are as follows:

- E51 : TO(S0-S7) must begin with ORG instruction.
- E52 : TO(S20-S999) can't begin with ORG instruction.
- E53 : TO instruction without matched FROM instruction.
- E54 : To instruction must comes after TO, AND, OR, ANDLD or ORLD instruction.
- E56 : The instructions before FROM must be AND, OR, ANDLD or ORLD
- E57 : The instruction after FROM can't be a coil or a function
- E58 : Coil or function must before FROM while in STEP network.
- E59 : More than 8 TO# at same network.
- E60 : More than 8 FROM# at same network.
- E61 : TO(S0-S7) must locate at first row of the network.
- E62 : A contact occupies the location for TO instruction.
- E72 : Duplicated TO Sxx instruction.
- E73 : Duplicated STP sxx instruction.
- E74 : Duplicated FROM sxx instruction.
- E76 : STP(S0~S7) without a matched STPEND or STPEND without a matched STP(S0~S7).
- E78 : TO(S20~S999), STP (S20~S999) or FROM instructions comes before or without STP(S0~S19).
- E79 : STP Sxx or FROM Sxx instructions comes before or without TO Sxx.
- E80 : FROM Sxx instruction comes before or without STP Sxx.
- E81 : The max. level of branches must <=16.
- E82 : The max. no. of branches with same level must <=16.
- E83 : Not place the step instruction with TO->STP->FROM sequence.
- E84 : The definition of STP# sequence not follow the TO# sequence.
- E85 : Convergence do not match the corresponding divergence.
- E86 : Illegal usage of STP or FROM before convergent with TO instruction.
- E87 : STP# or FROM# comes before corresponding TO#.
- E88 : During this branch, STP# or FROM# comes before the corresponding TO#.
- E89 : FROM# comes before corresponding TO# or STP#.
- E90 : Invalid To# usage in the simultaneous branch.
- E91 : Flow control function can not be used in the step ladder region.

Appendix FB-DAP Simple Human Machine Interface

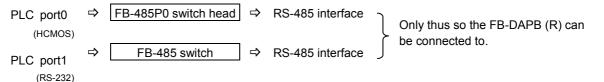
In addition to timer, counter, register, and contact data access function, the date setter of FB-DAP can connect to many others for alarm message display, self-defined buttons, wireless card reading, and the like simple human-machine (HM) functions.

■ FB-DAP Simple HM


Model Spec.	FB-DAP-A(R)	FB-DAP-B(R)				
Display	LCD (English version), 2-line	×16-character, LED backlight				
Button	20-key	y (4×5)				
Wireless Card reading	–AR and–BR only,	distance 12~18cm				
Power supply	5V	24V				
Current consumption	100mA (120mA)	41mA (48mA)				
Com. Interface	HCMOS	RS-485				
Service points connected	Single set	Max. 16-set connected				
PLC Com. Port connected	port 0	port 0,1,2 (In which port 0 and 1 needed to be converted as RS-485)				
General feature	Timing/counting < register < contact	ct access(write protected for each)				
Special feature	Alarm v message display v self-	-definition of special speed keys				
Card writing feature	Order for machine types with sp	pecial numbers to us is required				

% PLC's MA
MU type machines can be connected to FB-DAP-B(R) only through FB-485 switch.

Wireless sensing card


Model Spec.	CARD-1	CARD-2
Memory	64bits with Cyclic Redunda	ancy Check (CRC) on data
Operation temp.	$-25^{\circ}\text{C}{\sim}50^{\circ}\text{C}$ (conf	forming to ISO7810)
Power supply		m wireless electric waves released by an reading module)
Sensing distance	12cm~18cm(fro	m FB-DAP front)
Number of writing	unwritable(uncopiable , exclusively)	10000 times at least
Size (mm)	86×5	4×13
Weight (Gram)	1	2

1.1 Profile

1.2 Important points before operation

- 1 FB-DAP possesses a function to return to the operation mode (general data setter and self-definition 8/16 speed keys) before power failure and each DAP can be place in a different mode when connecting many sets.
- 2 When operating FB-DAP , D2944~D3071 register of PLC will be used as the systematic architecture zone (in which data set by all the FUN functions can be stored except item 11), the user shall avoid this zone.
- 3 Any communication port, once converted to a RS-485 interface (port 2 is itself a RS-485 interface), can be connected to a maximum of 16 FB-DAP-B(R) sets.

- 4 · When PLC is connected with FB-DAP-B(R) · the service point numbers of PLC are limited to a range of 1~32.
- 5 Parameters for the connection between PLC and FB-DAP-B(R)(DAP automatic detection Baud Rate 9600 / 19200 / 38400)

port0 、 1 、 2 : 9600 / 19200 / 38400 、 Even 、 7Data bits 、 1Stop bit

ex : R4158=5521H, i.e. port2 being 9600 ; R4158=5523H, i.e. port2 being 38400.

- 7 The transmission line of the RS-485 interface must use a twisted pair with a shielded cover on the outer layer. Please refer to chapter 12-5 in the Operation Manual II for other important points.
- 8 . The scanning time of PLC will affect the update time of DAP.
- 9 The OS of FB-DAPB(R) shall be new V2.00 above PCB so that multiple sets can be connected. Press
- 10 When PROLADDER(or FP07) and DAP are connected to the same set of PLC, to change the program through PROLADDER is not allowed; if so, the timer information displayed by DAP won't be correct (In this

case, the DAP shall be reset).

11 · Versions after the OS V3.15 (including) of FP-07 can be aimed for DOCs in 16 words of contacts, registers.

1.3 The Main Functions of FB-DAP

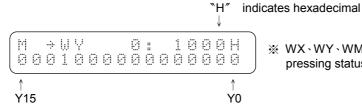
The main functions of FB-DAP can be categorized as : setter functions of general information, FUN functions of parameter setting, wireless card reading, and message display function. The details of the functions will be introduced in the following sections.

1.4 Setter Functions of General Information

FB-DAP can be used as a "TC setter" as well as the access to registers $(R \cdot D \cdot W)$ and contacts $(X \cdot Y \cdot M \cdot S)$. In the FUN functions in the following sections, it can also be used as write-protect with $T \cdot C \cdot R \cdot D \cdot X \cdot Y \cdot M \cdot S$. There are two measures to monitor information: ADR (general addresses) and DOC monitoring. The latter shall make DOC compilation (16 words in English, symbols, numbers) in advance through Proladder or FP07 for T, C, register R/D and contacts so the DOC can be displayed.

- 1 · ADR Monitoring
 - A. Timer and Counter Monitoring

[Pressing Keys]	:	T ^x or	C +	number +	ENTER
-----------------	---	-------------------	-----	----------	-------


T or C number Cursor position

^		\checkmark		
T	0 0 N		12.50S 15.00S	 ← Set value ← Current value
	↑ Statu	S	∱ FB-DAP autor	natic detecting a decimal point position

B. Registers (R \ D \ DR \ DD \ WX \ WY \ WM \ WS) and contacts (X \ Y \ M \ S) monitoring

[Monitored range]

	Turne	Т	С	D	R	DD	DR	WX	WY	WM	WS	Х	Y	М	S
	Туре												-		_
		0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Range	 255	 255	 2943	 8071	 2492	 8070	 240	 240	 1984	 984	 255	 255	 2001	 999
		200	200	2943	8071	2492	8070	240	240	1964	904	200	200	2001	999
[Pressing keys] : \mathbb{R}^{S} or \mathbb{D}^{M} $\mathbb{D}^{M} + (\mathbb{R}^{S}$ or $\mathbb{D}^{M})$															
			+(_R,	or 🔲))					num	ber + ENT	ER			
		SHIFT	0 ^w +	SHIFT (⊺ [×] or	C Y or	D [™] or	(R ^s)							
		SHIFT	([] ×	or C	or D	or R)]						
	0				\/_l										
	Cursor position Value \downarrow \downarrow														
		00			234		← Iter								
	Ŷ	12	: U	FF			← Iter	n 2							
			1												
			S	tatus											

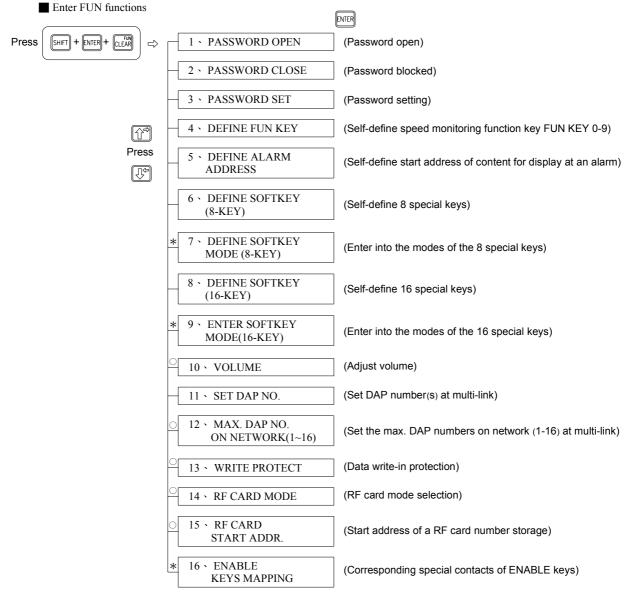
※ WX、WY、WM、WS can display one item only but each pressing status is available.

Note : 1 • Pressing 🖉 can move the cursor up and down or switch between CV or PV.

- $2 \cdot \text{Pressing}$ or \bigcirc can decrease or increase the monitored item number.
- 3 · For a monitored item value, input a new value directly and then press [MER]. The status of the contacts can be changed by pressing $\square + \square$
- 4 Pressing SHFT + 3 can change the means to display a value (either with decimal or hexadecimal system).
- 2 . DOC monitoring

TIMER 10 ON CV: 123.45	← DOC of T10← Current value
↑ Contact status	
$ \begin{array}{c} P R O D U C T & 1 \\ = & 1 G G G \end{array} $	< Register DOC ← Value
Note : 1 \cdot Pressing \bigcirc + \bigcirc can switch the monitoring of	of ADR and DOC.
2、The display switch between CV (current value) ar	nd PV of the timer (counter) can use [🖉 .
$3 \cdot 3 \cdot 2$ or 2 can be moved up or down to next r	nonitored item with DOC.
Speed monitoring FUN keys(FUN KEY 0 \sim 9, totaling 10 key	ys)

3、


[Pressing keys] : $\operatorname{HFT} + \operatorname{CLA}(\operatorname{OV} \sim \operatorname{MFT}) \Rightarrow$ Direct display of a monitored item set by the client.

Note: 1 . Items to be monitored can be set from the following "FUN functions".

2 . Items to be monitored can be displayed with general or DOC means.

1.5 FUN Functions

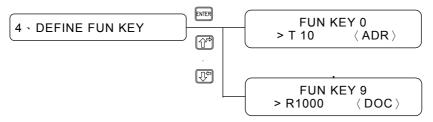
1.5.1 In and out of FUN functions

* : Indicates when multiple DAPs are connected, each DAP can be set respectively.

○ : Indicates when multiple DAPs are connected, the information set by one of them is not available for use until PLC is reset.

+ Monitored items + ENTER

CLEAR


Exit of FUN functions to general information setter functions. Press

Note: 1. When several DAPs are connected, information can be stored to PLC (D2944~D3071) if one of the DAP is set in all the FUN functions (except item 11).

- 2 After entering FUN 4~15, without password protection, all the FUN functions can be executed by only pressing
 Imerent With password protection, it is required to pass it first before executing FUN functions.
- 3 If it is password-protected, FB-DAP will be set in a password protection status at each beginning of operation.
- 4 . FUN items 1~9 can be entered with numeric keys directly and then go straight to that function.
- 5 After executing a item of FUN functions, if execution of other items is required, press the three keys

1.5.2 FUN function description

- FUN 1~3 (password)
 - 1 $\cdot\,$ Password contains up to 4 digits (unrelated to LADDER program's password) .
 - 2 · After the password is set, it will enter a password-locked status once it is started.
 - 3 After the password is locked, all the FUN functions are not available.
- FUN 4 (DEFINE FUN KEY) : Self-setting speed monitoring function keys

- 1 · There are ten self-setting speed monitoring function keys in total.
- 2 · All items available for monitoring can be defined in the ten function keys.
- FUN 5 (DEFINE ALARM ADDRESS) : The address for display at self-setting an alarm.
 - 1. There are ten start addresses, that is, ten levels of alarm signals.
 - 2. All items available for monitoring can be defined in the said ten start addresses.
 - 3. Pressing [3+17] + [6] can select ADR or DOC for display.
 - 4. Control measures of alarm signals for display are shown as follows :

[Corresponding list for control]

Alarm level (priority sequence)	Control contact	Indication register	Start address of the content displayed		
ALARM 0	M1900	R3820	Client-defined		
ALARM 1	M1901	R3821	Client-defined		
ALARM 9	M1909	R3829	Client-defined		

[Example] Assume the start address of ALARM 0 displayed content to be R100,

If M1900=1 then the alarm address for display is R100 + (R3820)

If R3820=0	⇔	Display address or DOC of R100
R3820=1	⇔	Display address or DOC of R101
R3820=2	⇔	Display address or DOC of R102

- Note 1 : When a multi-level alarm occurs, only the address or DOC with priority can be displayed. The address or DOC of a sub level alarm will not be displayed until this alarm with priority is released.
- Note 2 : To display a DOC (message) with 16 digits above, the corresponding indication register (R3820~ R3829) content can be changed anytime to reach this purpose.
- Note 3 : M1911 can control whether to sound the alarm buzzer. If M1911=0 (preset), it shall be activated.

- FUN 6 (DEFINE SOFTKEY-8 KEYS) : Self-defining 8 soft keys FUN 7 (ENTER SOFTKEY MODE-8 KEYS) : Enter 8 soft key mode
 - 1. Can self-define 8 soft keys : $T^{\times} \land C^{\vee} \land D^{\times} \land \mathbb{R}^{3} \land \mathbb{R}^{3} \land \mathbb{R}^{3} \land \mathbb{R}^{3} \land \mathbb{R}^{3}$
 - 2. Definable range : $R0 \sim R3839 \cdot D0 \sim D2943 \cdot M0 \sim M1899$.
 - 3. In defining M0 \sim M1899, this key can be defined as one of the 5 modes.

Mode	Definitior	า	Description		
0	Set	(S)	Set this contact to 1		
1	Reset (R)		Set this contact to 0		
2	Moment	(M)	1 in pressing, 0 in being released		
3	Inverse	(1)	Pressing once will have one inverse phase.		
4	Monitor	(V)	Monitor this contact		

[Example] Assume ^{⊤×} definition as R0, ^ℂ definition as M0 mode 0(Set). Once enter the 8 soft key mode in function 7,

Then pressing $\begin{bmatrix} T^{\times} \\ - \end{bmatrix} \Rightarrow$ display address or DOC of R0.

 $\boxed{C^{\vee}} \Rightarrow display$ address or DOC of M0 and force M0 ON

- Note 1 : After defining the 8 soft keys, once function 7 is executed, it will enter 8 soft key operation mode. And then the 8 soft keys will be executed according to function 6 definitions.
- Note 2 : 1 both are allowed out of definition, but the other keys will not be effected without definition.
- Note 3 : To return to normal operation mode, press " $\boxed{\text{LEAR}}$ + (D2972 content) + $\boxed{\text{NER}}$ ", among which D2972 content is from 0000~9999 (4 digits required).
- FUN 8 (DEFINE SOFTKEY-16 KEYS) : Self-define 16 soft keys FUN 9 (ENTER SOFTKEY MODE-16 KEYS) : Enter 16 soft key mode
 - 1. Available for defining 16 soft keys : $\square^{\times} \land \square^{\times} : \square^{\times} \land \square^{\times} \land \square^{\times} : \square^{$
 - 2. Definable range : T0~T255 \ C0~C199 \ R0~R3839 \ D0~D2943 \ M0~M1899 \
 - 3. In defining M0~M1899, this key can be defined as one of the 5 modes and when a message is being displayed, if the key is pressed, the display will not be changed.

Mode	Definition		Description
0	Set	(S)	Set this contact to 1
1	Reset	(R)	Set this contact to 0
2	Moment	(M)	1 in pressing, 0 in being released
3	Inverse	(1)	Pressing once will have one inverse phase.
4	Monitor	(V)	Monitor this contact

4. When defined as T, C, R or D, the value change is by pressing [[][™]] or [[][™]] to make the corresponding M1840~M1871 ON (the client is required to write a plus/minus 1 program in the LADDER program) to achieve this purpose.

Soft key	0	1	2	3	4	5	6	7	8	9	т	С	D	R	SHIFT	¢
仓	M1840	M1841	M1842	M1843	M1844	M1845	M1846	M1847	M1848	M1849	M1850	M1851	M1852	M1853	M1854	M1855
Û	M1856	M1857	M1858	M1859	M1860	M1861	M1862	M1863	M1864	M1865	M1866	M1867	M1868	M1869	M1870	M1871

[Example] Assume T^{\times} definition as R0, C^{\vee} defined as M0 mode 1 (Reset).

After entering 16 soft key mode in function 9,

Press	T ×	\Rightarrow Display the address or DOC of R0, and then pressing $\textcircled{1}$, its correspondin	g
		M1850 will be ON: OFF after it is released.	

 \square \square Display the address or DOC of M0 and force M0 OFF.

Note 1: After the 16 soft keys are defined, once function 9 is executed, it will enter 16 soft key operation mode and then the 16 soft keys will be executed according to function 8 definition.

Note 2 : to return to normal operation mode, press " u = (1 + 1) + 1 = (1 + 1) + (

• FUN 11 (SET DAP NO.) : When several sets are connected, set DAP number.

After any communication of FB-PLC is converted to RS-485 interface (Among which port2 as such is a RS-485 interface), the FB-DAP-B(R) of the 16 sets can be connected. Each DAP shall need a unique number, 1~16 (but one of them must be number 1). This DAP is not related to PLC numbers, meaning the number can have the same PLC number.

• FUN 12(MAX. DAP NO. ON NETWORK): when several sets are connected, set the biggest DAP number on the Web. (Max. 16 DAPs, preset 7)

In a connection of several sets, FB-PLC can be joined with new DAPs. But the more the DAP number, the longer the time to update information of each DAP. As a result, set the DAP number (the DAP number can not be bigger than this number) on the Web appropriately will decrease time for information to update.

• FUN 13 (WRITE PROTECT) : Information write in

Aimed for monitored items (T, C, R, D, Y, M, S), set the information in write-in protection separately. Just fill in the corresponding place with 1, and then the item is write-in protected and can be read values only.

- FUN 14 (RF CARD MODE) : Wireless card reading options
- MODE= "0" ⇒ When reading a RF card, it will display whether this card is OK or Error. When the RF card is out of sensing distance, it will pop up "NEXT", indicating another RF card is available now.

• FUN 15 (RF CARD START ADDR.) : Start addresses storing the wireless RF card numbers

Store a card number's address can be set through the function, ranging from D0~D2860 (preset to D2860). Please refer to the Wireless Card Reading Functions in 1.6 for detailed description.

• FUN 16 (ENABLE KEYS MAPPING) : Corresponding special contact of Enable key

After this function is set to "Enable" and enter SOFTKEY MODE (8KEYS and 16KEYS), pressing a definable soft key will force ON some contact of a corresponding contact under its number and the other contacts become OFF. When set to "Disable", the corresponding special contact of this DAP will not be effected.

KEY No.	т	С	D	R	7 (↑)	4 (↓)	1	0	8	5	2	SHIFT	9	6	3	¢
1	M1784	M1785	M1786	M1787	M1788	M1789	M1790	M1791	M1792	M1793	M1794	M1795	M1796	M1797	M1798	M1799
2	M1768	M1769	M1770	M1771	M1772	M1773	M1774	M1775	M1776	M1777	M1778	M1779	M1780	M1781	M1782	M1783
3	M1752	M1753	M1754	M1755	M1756	M1757	M1758	M1759	M1760	M1761	M1762	M1763	M1764	M1765	M1766	M1767
4	M1736	M1737	M1738	M1739	M1740	M1741	M1742	M1743	M1744	M1745	M1746	M1747	M1748	M1749	M1750	M1751
5	M1720	M1721	M1722	M1723	M1724	M1725	M1726	M1727	M1728	M1729	M1730	M1731	M1732	M1733	M1734	M1735
6	M1704	M1705	M1706	M1707	M1708	M1709	M1710	M1711	M1712	M1713	M1714	M1715	M1716	M1717	M1718	M1719
7	M1688	M1689	M1690	M1691	M1692	M1693	M1694	M1695	M1696	M1697	M1698	M1699	M1700	M1701	M1702	M1703
8	M1672	M1673	M1674	M1675	M1676	M1677	M1678	M1679	M1680	M1681	M1682	M1683	M1684	M1685	M1686	M1687
9	M1656	M1657	M1658	M1659	M1660	M1661	M1662	M1663	M1664	M1665	M1666	M1667	M1668	M1669	M1670	M1671
10	M1640	M1641	M1642	M1643	M1644	M1645	M1646	M1647	M1648	M1649	M1650	M1651	M1652	M1653	M1654	M1655
11	M1624	M1625	M1626	M1627	M1628	M1629	M1630	M1631	M1632	M1633	M1634	M1635	M1636	M1637	M1638	M1639
12	M1608	M1609	M1610	M1611	M1612	M1613	M1614	M1615	M1616	M1617	M1618	M1619	M1620	M1621	M1622	M1623
13	M1592	M1593	M1594	M1595	M1596	M1597	M1598	M1599	M1600	M1601	M1602	M1603	M1604	M1605	M1606	M1607
14	M1576	M1577	M1578	M1579	M1580	M1581	M1582	M1583	M1584	M1585	M1586	M1587	M1588	M1589	M1590	M1591
15	M1560	M1561	M1562	M1563	M1564	M1565	M1566	M1567	M1568	M1569	M1570	M1571	M1572	M1573	M1574	M1575
16	M1544	M1545	M1546	M1547	M1548	M1549	M1550	M1551	M1552	M1553	M1554	M1555	M1556	M1557	M1558	M1559
	16 M1544 M1545 M1546 M1547 M1548 M1549 M1551 M1552 M1553 M1555 M1556 M1557 M1558 M1559 In 8KEYS MODE, only 8 keys T [×] , C [×] , D [×] , R ³ , M ² ,															

The following is corresponding special contacts to different DAP keys when in 16 KEYS MODE:

In 8KEYS MODE, only 8 keys $T^* \ C' \ D^* \ R^3 \ MHT \ C'' \ MHT \ R^3 \ MHT \ MHT \ R^3 \ MHT \ MHT \ R^3 \ MHT \ R^3 \ MHT \ R^3 \ MHT \ R^3 \ MHT \ MHT \ MHT \ R^3 \ MHT \ MH$

 $\langle \text{Example} \rangle$ No.2 : Pressing \square^{\times} , M1768 is ON and M1769 \sim M1783 OFF.

No. 5 : Pressing \mathbb{D}^{*} , M1722 is ON and other contacts M1720~M1735 OFF.

1.6 Wireless card reading functions

- An applicable RF card is an exclusive read-only card (RF-CARD-1) or readable/writable card (RF-CARD-2), in which the card number of the read-only card is unique (with 16 0~F digits), not repeatable and copyable. And card numbers read by FB-DAP-AR(BR) shall be encoded with high security.
- The sensing distance of a RF card generally is 12~18cm, but shall be kept away from electromagnetic wave interference source or high voltage power line.
- Readable/Writable cards (RF-CARD-2)can use Fatek's FB-DAP-W in special sequence numbers to write in card numbers. The card numbers are all encoded and relate to machine sequence numbers (the first 4 codes are the machine's sequence number, the last 12 codes defined by the client). Only through Fatek's FB-DAP-A(B)R can a correct numbers be read. Under FUN function 17, FB-DAP-W can be input 12 0~F digits or use () to change the card number. Finally, only place the distance of RF-CARD-2 within FB-DAP-W 12cm and then press (), so that the card number can be written into RF-CARD-2.

• Locations and application of the card number storage

FB-DAP saves RF card numbers within sensing distance into two places in PLC. The places and application are described as follows:

4 · Fixed in R3835~R3839 (totaling 5 registers) : During operation, M1910 shall be controlled.

	Card number format								
R3835	N1	N2							
R3836	××××								
R3837	××××								
R3838	××××								
R3839	××	××							

 $\label{eq:N1} \begin{array}{l} \mathsf{N1}:\mathsf{DAP}\ \mathsf{number}\ 1{\sim}16\ (i.e.\ 1H{\sim}10H) \\ \mathsf{N2}:\mathsf{52H}\ (\mathsf{R}:\mathsf{read-only}\ \mathsf{card}\) \ \ \mathsf{or}\ \mathsf{57H}\ (\mathsf{W}:\mathsf{readable/writable}\ \mathsf{card}\) \\ \mathsf{R3836}{\sim}\mathsf{R3839}\ \mathsf{store}\ 16\ \mathsf{0{\sim}F}\ \mathsf{card}\ \mathsf{numbers} \end{array}$

Application :

Only in monitoring (or8/16 soft keys) mode (non-FUN functions) and the RF card in sensing distance, FB-DAP(-AR or -BR) will send the RF card number together with DAP number to PLC R3835~R3839. In mode 0 of function 14 (RF CARD MODE), all the client needs to do is compare the card number. If it is OK, only set M1910 to 1 and then DAP will indicate "OK", or "ERROR". When the RF card is out of sensing distance, DAP will pop up "NEXT" and clear the content of PLC R3838~R3839 to 0, which means available for another RF card. In mode 1 of function 14, as soon as DAP reads a card number, it will save it to R3835~R3839 with a beep. After the RF card exits, the 5 registers remain unchanged.

Applicable occasions :

Where one set or multiple sets are connected but RF cards are not used frequently, the program to be applied will be a lot easier. But in the event of a card number read from different DAPs at the same time, it will be difficult for PLC to identify the information correctly.

5 • Preset D2860 ~ D2939 (16 differently-located DAP take on 5 registers individually, i.e. 80 registers in all, but the locations can be changed through function 15) control one point of M1880 ~ M1895 separately when in use.

		number mat		Card number Card number format				_	_	Card number format		
D2860	N1	N2	D2865	N1	N2	D2870	N1	N2		D2935	N1	N2
D2861	××	××	D2866	××××		D2871	1		D2936		$\times \times \times \times$	
D2862	××	××	D2867	××	××	D2872 ××××			D2937 ××		××	
D2863	××	××	D2868	××	××	D2873	××	××		D2938	××	××
D2864	××	××	D2869	××	××	D3974	××	××		D2939	$\times \times \times \times$	
	No. 1 No.		No. 3						No	. 16		
	1	V			Ţ		ſ	ļ			1	ļ
	M1	880		M1	881		M1	882			M1	895

Application measures :

The application measures are all described as the above-mentioned but that the storage places of card numbers and corresponding contacts for control are different. For example, in mode 0 of function 14, from No. 2 DAP sensing to the RF card, now no. 2 will send same card numbers to two different places in R3835~R3839 and D2865~D2869 (the content of the other registers remains unchanged), and all the client needs to do is control M1881 for the DAP to display "OK" or "ERROR". After the RF card exits, the content of the 10 registers R3835~R3839 and D2865~D2869 will be cleared to 0 (but remains unchanged in mode 1).

Applicable occasions :

When several DAPs are connected, the RF card can be read in from different DAPs and each DAP has its independent card numbers storage places and control points so that no PLC misjudgment case occurs, but the programming will be more troublesome.

% If you do not want R3835~R3839 to display a card number value, you can use the Ladder program to fill in these registers with other fixed values.

1.7 Special message display function

In general monitoring mode and soft key mode (16 KEYS or 8 KEYS), the user can configure the DAP to display every kind of message under some circumstances, and the two-line display on the LCD can be controlled separately to simultaneously display different messages. Every message is 1~511 words and numbers (ASCII code) long, in which a maximum of 16 variables (if variables with 32-digit are not used, then it can use up to 25) can be included. When a message has more than 16 words, the message will be displaced left for display, in which the moving speed or pause time can be configured flexibly.

Message display application 1.7.1

The FB-DAPB(R) can be connected up to 16 sets (Number 1~16). Each DAP not only can display different messages individually but make all the DAPs connected display the same message simultaneously. If you go to a special contact (R3780~M3813) set by Enable, the DAP will display the message ASCII Code) indicated by the corresponding indication register (R3780~M3813). The content of the indication register is the start register of messages, i.e. start of ASCII Code. The indication register content can be changed anytime in order to change and display different messages.

Number of	LCD	line 1	LCD	line 2	
a message displayed	Special contact	Indication register	Special contact	Indication register	
1~16	M1800	R3780	M1801	R3781	
1	M1802	R3782	M1803	R3783	
2	M1804	R3784	M1805	R3785	※ The start register of a message
3	M1806	R3786	M1807	R3787	indicated by an indication register
4	M1808	R3788	M1809	R3789	means :
5	M1810	R3790	M1811	R3791	$0 \sim 8070$: indicating R0 \sim R8070
6	M1812	R3792	M1813	R3793	10000~13070 : indicating D0~D3070
7	M1814	R3794	M1815	R3795	※ Special contacts M1800 and M1801
8	M1816	R3796	M1817	R3797	have a priority display function.
9	M1818	R3798	M1819	R3799	※ M1911 can control an alarm buzzer
10	M1820	R3800	M1821	R3801	whether to sound or not. If M1911=0
11	M1822	R3802	M1823	R3803	(preset), it shall be activated.
12	M1824	R3804	M1825	R3805	
13	M1826	R3806	M1827	R3807	
14	M1828	R3808	M1829	R3809]
15	M1830	R3810	M1831	R3811]
16	M1832	R3812	M1833	R3813]

The following is a list of corresponding special contacts and indication registers when each DAP is displaying a message for control.

 $\langle \text{Example} \rangle$ Assume M1803 from 0 \rightarrow 1, R3783=100

Result : Line 2 of No. 1 of the LCD will display messages in ASCII Code with R100 start.

 \langle Example \rangle Assume M1828 from 0 \rightarrow 1, R3808=10000

Result : Line 1 of No. 14 of the LCD will display messages in ASCII Code with D0 start.

 $\langle \text{Example} \rangle$ Assume M1801 from 0 \rightarrow 1, R3781=0

Result : Line 2 of all the DAPs will display messages in ASCII Code with R0 start.

1.7.2 The Information formats of messages (ASCII Table)

The information formats of messages are very similar to the file information in ASCII in chapter 15 in the Advanced Manual that are all categorized as fixed background information and dynamic variable information. The first can be words in English, numbers, or signs, and the second binary, decimal or hexadecimal system.

Length of a message is 1~511 digits (including blank spaces), but because there are only 16 digits a line in a DAP LCD, if a message has more than 16 digits, it will be displayed automatically toward the left (preset moving one time a second); if less than 16 digits, the tail will be filled in with blank digits and no moving occurs.

To edit a message, the WinProladder ASCII Editor can be applied. The editing command formats are as follows:

① Background information format

Any ASCII Code digits quoted with ' ' can be background information. To display a single quotation mark as such, two continuous quotation marks are a must. Example:

' I ' 'M A BOY' will be displayed I'M A BOY

② Variable information format

, " <u>8</u>	• <u>2</u>	<u>R0</u> I)" ,
7	\uparrow	↑	\checkmark
Total	Decimal	Variable	Carry
variable	point	Register	code
count	count		displayed
displayed			

Description information in a pair of dual quotation marks * // is used to indicate the register address (number) storing the variable information and in what format and carry code to display.

- Total variable count displayed : In this case, the value (including minus) of the variable R0 is displayed in a field with 8 digits. If the variable value is bigger than the total variable count displayed, the digits further from the point will be cut. If not enough, blank spaces will fill in.
- Decimal point count : the decimal point count in the total digits. In this case, with a total count of 8 digits, the decimal point count is 2. The decimal point sign * · ″ as such possesses one digit and there are 5 digits left in the integral part.
- Contacts : generally displayed as ON or OFF (total digit count displayed is set to a fixed 3), but if added with binary system B in the tail, 0/1 will be displayed (total digit count fixed 1)
- Carry code : can be hexadecimal H, decimal D (the carry code will use decimal if without indication, so D can be omitted.), or binary B, etc., but a 32 digit variable can not be displayed with binary system.

In this case, R0's content value is -32768. In 8.2 format the result is displayed as:

If the format is changed from 8.2 to 5.1, then the result becomes:

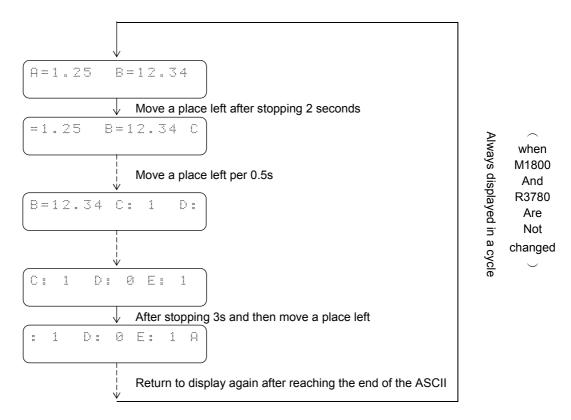
2 7 6	i .	8
-------	-----	---

③ Basic command signs

nS Left move speed (repeatable)

Message displayed at a left LCD move per n $\,(\,1{\sim}255\,)\,{\times}\,0.1s\,{\circ}$

nP Stop move (repeatable)


Message stop in (1~255) \times 0.1s $^{\text{,}}$ and then move left at a configured speed.

• [,] Comma

Used as a statement to divide the file information. Information between two neighboring commas is a complete and executable statement (unnecessary for the start and end of a file).

- END End of a file
 - % nS and nP commands will not be activated until after the information following them moves to the left first place on the LCD display. They can have a repeatable arrangement of any place in ASCII, but the same command cannot be connected together.
 - (Example) Information edited with WinProladder ASCII file editor. R0 is a start register of an ASCII file and the file information is shown as follows :
 - 5S, 20P, 'A=', ``6.2R3840", 'B=', ``6.2R3841", 30P, 'C: ', ``1M0B", 'D: ', ``1M1B", 'E: ', ``1M2B", ', ', END

If M1800 from 0→1 and R3780=0 (i.e. R0), Line 1 of the LCD of DAPs of all numbers is shown as follows :

- * Variable information is renewable anytime.
- % To display another message, just change R3780 value and not for M1800.